No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 3 answers

Aashu Kumar 6 years, 11 months ago

Infinite many solution☺️☺️☺️☺️

Mukesh Singh 6 years, 11 months ago

Since a1/a2 = b1/b2 is not = c1/c2 Hence it is inconsistent with no solutions

Anshika Pal???? 6 years, 11 months ago

No solution he bhai example no. 12 pg56 NCERT dekh le ok
  • 3 answers

Aashu Kumar 6 years, 11 months ago

Put the value on Sn that n=1 as a first term. Then put n=2 as a second term.

Amit Singh 6 years, 11 months ago

putting value n=1 This is a first term Putting value n=2 This is a second term Show ap 3 4 ....

Simran Kaur 6 years, 11 months ago

n=1 , 4(1)-(1)*(1) = 3. n=2. , 4(2)-(2)*(2) = 4. n=3. , 4(3)-(3)*(3) = 3
  • 0 answers
  • 1 answers

Anshika Pal???? 6 years, 11 months ago

Bhai question 3 mein konsa part
  • 2 answers

Divanshu Rawat 6 years, 11 months ago

Yar tum to ek question ko hi lekar beth gyi , us samay mera mood thik nhi tha

Anshika Pal???? 6 years, 11 months ago

Na abhi baki he answer thik hena mera divanshu sir bolo
  • 2 answers

Aashu Kumar 6 years, 11 months ago

All are important question in that chapter?????

Divanshu Rawat 6 years, 11 months ago

There is no important questuons at all , you will trt to understand 1)how to construct a similar triangle in given ratio .2)how to cunstruct tangents of a circle.
  • 2 answers

Juhi Kumari 6 years, 11 months ago

Thanks

Yogita Ingle 6 years, 11 months ago

√3 = 1.732......
√5 = 2.236.....
The numbers which can be expressed in the form of p/q, where q ≠ 0 are called rational numbers. A terminating decimal and a non-terminating non-repeating decimal can be represented as a rational number.
Therefore, a rational number between √3 and √5 is 2.
So, three irrational numbers between √3 and √5 are:  1.79877985647984123564........ , 2.0100100010000100001110001.......... , 2.1212121212123121234.......

  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago

Let h be the height of each cone. Then,
Sum of the volumes of two cones = Volume of the sphere
{tex}\Rightarrow{/tex}{tex}\frac { 1 } { 3 } \pi r _ { 1 } ^ { 2 } h + \frac { 1 } { 3 } \pi r _ { 2 } ^ { 2 } h = \frac { 4 } { 3 } \pi R ^ { 3 }{/tex}
{tex}\Rightarrow{/tex} {tex}\left( r _ { 1 } ^ { 2 } + r _ { 2 } ^ { 2 } \right) h = 4 R ^ { 3 }{/tex}
{tex}\Rightarrow{/tex} {tex}h = \frac { 4 R ^ { 3 } } { r _ { 1 } ^ { 2 } + r _ { 2 } ^ { 2 } }{/tex}

  • 1 answers

Rahul Singh 6 years, 11 months ago

Change the tanA and cotA into sinA and CosA Then solve
  • 1 answers

Sia ? 6 years, 4 months ago

Let A be the first term and D be the common difference of the given A.P. Then,
a = Sum of p terms
{tex}\Rightarrow \quad a = \frac { p } { 2 } \{ 2 A + ( p - 1 ) D \}{/tex}
{tex}\Rightarrow \quad \frac { 2 a } { p } = \{ 2 A + ( p - 1 ) D \}{/tex}...(i)
b = Sum of q terms
{tex}\Rightarrow \quad b = \frac { q } { 2 } \{ 2 A + ( q - 1 ) D \}{/tex}
{tex}\Rightarrow \quad \frac { 2 b } { q } = \{ 2 A + ( q - 1 ) D \}{/tex}...(ii)
and, c = Sum of r terms
{tex}\Rightarrow \quad c = \frac { r } { 2 } \{ 2 A + ( r - 1 ) D \}{/tex}
{tex}\Rightarrow \quad \frac { 2 c } { r } = \{ 2 A + ( r - 1 ) D \}{/tex}...(iii)
Multiplying equation (i), (ii) and (iii) by (q - r), (r - p) and (p - q) respectively and adding, we get
{tex}\frac { 2 a } { p } ( q - r ) + \frac { 2 b } { q } ( r - p ) + \frac { 2 c } { r } ( p - q ){/tex}
= {2A + (p - 1)D} (q - r) + {2A + (q - 1)D} (r - p)+ {2A+(r - 1)D} (p-q)
= 2Aq - 2Ar + (p-1)(q -r) D + 2Ar - 2AP + (q - 1) (r -p)D + 2Ap - 2Aq + (r -1)(p-q)A
= 2Aq - 2Ar + 2Ar - 2AP+ 2Ap - 2Aq + (p-1)(q -r) D + (q - 1) (r -p)D + (r -1)(p-q)A
= 2A (q - r + r - p + p - q) + D {(p-1) (q - r) + (q - 1) (r - p) + (r - 1) (p-q)}
= 2A × 0 + D × 0
= 0
 

  • 0 answers
  • 3 answers

Shriya ?? 6 years, 11 months ago

thank u soo so much??

Naman Jain 6 years, 11 months ago

These points are collinear so using the formula of area of triangle the area will be equal to 0 0=1/2|a(y-b)+x(b-0)+0(0-y)| |ay-ab+xb-0+0| ay-ab+xb=0 ay+xb=ab ay+xb/ab=1 Taking lcm x/a+y/b = 1 Hence proved

Shriya ?? 6 years, 11 months ago

plz answer bata do
  • 2 answers

Rahul Singh 6 years, 11 months ago

1.(1) 2.(2/7)

Shriya ?? 6 years, 11 months ago

a n s w e r please
  • 6 answers

Shriya ?? 6 years, 11 months ago

lcm ×15 = 4500 => lcm = 4500/15 => lcm = 300

Shriya ?? 6 years, 11 months ago

in this ques appyl (hcf × lcm = product of hcf and lcm ) this formula

Shriya ?? 6 years, 11 months ago

this ques is right

Divanshu Rawat 6 years, 11 months ago

300

Mamta Singh 6 years, 11 months ago

The Question is incorrect Because there given only b and to find LCM ,first we want to find a which is not possible in this question

Shriya ?? 6 years, 11 months ago

lcm = 500
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago


According to the question,  R(x, y) is a point on the line segment joining the points P(a, b) and Q(b, a)
Let point R(x + y) divides the line joining P(a,b) and Q(b,a) in the ratio {tex}\lambda{/tex} : 1.
{tex}\therefore x = \frac { \lambda b + a } { \lambda + 1 }{/tex} 
{tex}y = \frac { \lambda a + b } { \lambda + 1 }{/tex}
Adding,  {tex}x+y=\frac { \lambda b + a + \lambda a + b } { \lambda + 1 }{/tex}
{tex}= \frac { \lambda ( a + b ) + 1 \times ( a + b ) } { \lambda + 1 }{/tex}
{tex}= \frac { ( \lambda + 1 ) \times ( a + b ) } { \lambda + 1 } = a + b{/tex}
{tex}\Rightarrow x+y=a+b{/tex}
Hence Proved.

  • 2 answers

Aryan Mhetre 6 years, 11 months ago

P8pp

As Yadav 6 years, 11 months ago

P+1 , _1
  • 3 answers

Vaibhav Baliyan 6 years, 11 months ago

Area of circle, circumference of circle and area of sector are not the formulae of surface area and volume

Chaitu Chowdary 6 years, 11 months ago

Area of circle πr2 , circumstances of circle 2πr ,area of sector teta/360×πr2

Pia Saini 6 years, 11 months ago

Bht saare formulae h

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App