No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 3 answers

Gajal Kumawat 6 years, 11 months ago

Hemisphere P.S.A.πr(square) C.S.A.- 2πr( square) T.S.A.- 3πr (square) Volume- 2/3πr (cuba)

| | | {R J } .....! ! !: ; 6 years, 11 months ago

Kiska formula of surface area batao mai .....object toh batao

Laiba Khan 6 years, 11 months ago

Formule's of surface areas and volumes
  • 0 answers
  • 3 answers

Manshi Raj 4 years, 11 months ago

???????

Manshi Raj 4 years, 11 months ago

gud

Gaurav Seth 6 years, 11 months ago

Q.Prove that- sinA-cosA+1/sinA+cosA-1=1/secA-tanA

Answer:

We have,

  • 1 answers

Gaurav Seth 6 years, 11 months ago

Let a be any positive integer and b = 4 
Then, by Euclid''s algorithm a = 4q + r for some integer q 0 and 0  r < 4 
Since, r = 0, 1, 2, 3 
Therefore, a = 4q or 4q + 1 or 4q + 2 or 4q + 3 

Since, a is an odd integer, o a = 4q + 1 or 4q + 3

 

Case I: When a = 4q + 1 

Squaring both sides, we have, 
a2 = (4q + 1)2 
 a2 = 16q2 + 1 + 8q 
         = 4(4q2 + 2q) + 1 
         = 4m + 1 where m = 4q2 + 2q   

Case II: When a = 4q + 3

Squaring both sides, we have,
a2 = (4q  +3)2
    = 16q2 + 9 + 24q
    = 16 q2 + 24q + 8 + 1
    = 4(4q2 + 6q + 2) +1
    = 4m +1 where m = 4q2 +7q + 2


Hence, a is of the form 4m + 1 for some integer m. 

  • 1 answers

Gaurav Seth 6 years, 11 months ago

According to given sum,

sin (1+tan)+cos (1+cot)=sec+cosec 

=> LHS= sin (1+tan)+cos (1+1/tan)

=> sin (1+tan)+cos (1+tan)/tan

=> (1+tan)(sin+cos/tan)

=> (1+tan)(sin.tan+cos)/tan

=> (1+tan)(sin2/cos+cos)/tan

=> (1+tan)(sin2+cos2)/tan.cos

=>(1+tan)/tan.cos

=>(1/tan.cos)+tan/tan.cos

=>( cot/cos)+(1/cos)

=> cosec +sec

LHS= RHS.

  • 1 answers

Arohi . 6 years, 11 months ago

If 12n ends with 0 then it must have 5 as a factor. But, 12n=(2×2×3)n which shows that only 2 and 3 are the prime factors of 12n. Also, we know from the fundamental theory of arithmetic that the prime factorization of each number is unique. So, 5 is not a factor of 12n. Hence, 12n can never end with the digit 0.
  • 2 answers

Parth Raii???? 6 years, 11 months ago

sb aap jaise faltu nhi baithe h

Gurjar Kabir (बैंसला) 6 years, 11 months ago

12 cm
  • 1 answers

Sia ? 6 years, 6 months ago

Let the present age of Nisha be x years.
Then, as per given condition
Asha's age (in years) is 2 more than the square of her daughter Nisha's age.
So, Asha's age = x2 + 2
Difference in their ages = x2 + 2 - x
And,  Asha's age when Nisha's age will be (x2 + 2) years  = ( x2 + 2) + (x2 + 2 - x)
If Asha's age is one year less than 10 times the present age of Nisha = 10x - 1
So, As per given condition
(x2 + 2 - x) + (x2 + 2) = 10x - 1
{tex}\Rightarrow{/tex} 2x2 - x + 4 = 10x - 1
{tex}\Rightarrow{/tex} 2x2 - 11x + 5 = 0
{tex}\Rightarrow{/tex} 2x2 - 10x - x + 5 = 0
{tex}\Rightarrow{/tex} 2x(x - 5) - 1(x - 5) = 0
{tex}\Rightarrow{/tex} (x - 5)(2x - 1) = 0
{tex}\Rightarrow{/tex} x - 5 = 0 or 2x - 1 = 0
{tex}\Rightarrow{/tex} x = 5 or {tex}x = \frac{1}{2}{/tex}
{tex}\Rightarrow{/tex} x = 5 [as age can't be a fraction]
{tex}\Rightarrow{/tex} x2 + 2 = 52 + 2 = 27
Hence, Nisha's age is 5 years and Asha's age is 27 years.

  • 7 answers

Mansi ??⚘?? 6 years, 11 months ago

Thanks to all of you ????

Aashu Kumar 6 years, 11 months ago

Answer will be 1

Yogita Ingle 6 years, 11 months ago

Two integers  p and q  are said to be coprime if they have no common factor other than 1.
∴ HCF of coprime numbers    p and q = 1

Dipti Singh 6 years, 11 months ago

1

@ Aashu 6 years, 11 months ago

Wlcm

Mansi ??⚘?? 6 years, 11 months ago

Thanks

@ Aashu 6 years, 11 months ago

HCF is one ....becoz coprime nos are having 1 as the common factor
  • 1 answers

Sia ? 6 years, 4 months ago

Let us suppose that 'a' be the first term and 'd' be the common difference of the A.P.
Now according to question it is given that
S9 = 162.
Using formula for sum to n terms of A.P, we have
{tex}\Rightarrow \frac{9}{2}\left[ {2a + (9 - 1)d} \right] = 162{/tex}
{tex} \Rightarrow \frac{9}{2}\left[ {2a + 8d} \right] = 162{/tex}
{tex}\Rightarrow{/tex} 9a + 36d = 162 ........................(i)
Let a6 and a13 be the 6th and 13th term of the A.P. respectively.
Therefore, using general form of nth term, we have,a6 = a + 5d and a13 = a + 12d
Since, {tex}\frac{{{a_6}}}{{{a_{13}}}} = \frac{1}{2}{/tex}
{tex} \Rightarrow \frac{{a + 5d}}{{a + 12d}} = \frac{1}{2}{/tex}
{tex}\Rightarrow{/tex} 2a + 10d = a + 12d
{tex}\Rightarrow{/tex} a = 2d
Now,substituting the value of a = 2d in equation (i), we get,
9(2d) + 36d = 162
{tex}\Rightarrow{/tex} 18d + 36d = 162
{tex}\Rightarrow{/tex} 54d = 162
{tex}\Rightarrow{/tex} d = 3
{tex}\Rightarrow{/tex} a = 2d = 2 {tex}\times{/tex} 3 = 6 = First term

Therefore, 15th term=a+14d=6+14(3)=48

  • 1 answers

Raj Tomar 6 years, 11 months ago

1+sin
  • 1 answers

Janhvi Bora 6 years, 11 months ago

It's a difficult question??
  • 2 answers

Anushka Jugran ? 6 years, 11 months ago

Opposite angles r equal in a rhombus

Ria Trivedi?? 6 years, 11 months ago

Opposite angles of rhombus are equal
  • 2 answers

Sachin Kori 6 years, 11 months ago

Let, "a" be the first term and "d" be the common difference ; Sm =Sn; m/2 { 2a + (m -1)d } = n/2 { 2a + (n-1)d } ; 2am + ( m2 - m )d = 2an + ( n2 - n )d ; 2am - 2an + ( m2 -m )d - ( n2 + n )d = 0 ; 2a (m - n) + ( m2 - m - n2 + n )d = 0 ; 2a (m - n) + ( m2 - n2 - ( m -n )d = 0 ; 2a (m - n) + [( m+n ) (m - n ) - (m - n)]d = 0 ; 2a (m - n) + (m - n) [ m+n - 1]d = 0 ; (m - n) [ 2a + (m+n - 1)d] = 0; since,,, m - n is not equal to zero [therefore m is not equal to n] ; therefore, 2a + ( m+n-1)d = 0 _____ eq.1 ; Sm+n = (m+n)/2 [ 2a + (m+n-1)d] ; Sm+n = m+n/2 × 0 [ from eq. 1] ; Sm+n = 0;; hence proved....

Gaurav Seth 6 years, 11 months ago

Let the first term of AP = a
common difference = d
We have to show that (m+n)th term is zero or a + (m+n-1)d = 0

mth term = a + (m-1)d
nth term = a + (n-1) d

Given that m{a +(m-1)d} = n{a + (n -1)d}
⇒ am + m²d -md = an + n²d - nd
⇒ am - an + m²d - n²d -md + nd = 0
⇒ a(m-n) + (m²-n²)d - (m-n)d = 0
⇒ a(m-n) + {(m-n)(m+n)}d -(m-n)d = 0
⇒ a(m-n) + {(m-n)(m+n) - (m-n)} d = 0
⇒ a(m-n)  + (m-n)(m+n -1) d  = 0
⇒ (m-n){a + (m+n-1)d} = 0 
⇒ a + (m+n -1)d = 0/(m-n)
⇒ a + (m+n -1)d = 0
  • 1 answers

Vaishnavi Singh 6 years, 11 months ago

y=2,x=3
  • 2 answers

Anushka Jugran ? 6 years, 11 months ago

Ye to kisi topper se hi puchna padega.. Mujhe to koi idea nhi hai

D.J Alok 6 years, 11 months ago

Search in YouTube ?✌?✌️
  • 1 answers

Samridhi Yadav 6 years, 11 months ago

P should not be equal to 4 rather it can be of any value
  • 6 answers

Sachin Kori 6 years, 11 months ago

Given, Internal radius of hemispherical shell ( r ) = 3 cm ; External radius of hemispherical shell ( R ) = 5 cm ; Radius of cone = 7cm ; volume of hemispherical shell = volume of cone ; 2/3 × 22/7 × { (5×5×5) - (3×3×3) } = 1/3 × 22/7 × (7×7) × h ; 2 {(5×5×5) - (3×3×3)} = 49 × h ; 2 { 125 - 27 } = 49 × h ; 2 × 98 = 49 × h ; h = 196 ÷ 49 ; h = 4cm

Samridhi Yadav 6 years, 11 months ago

Ots answer is sixteen by fourty nine

Sachin Kori 6 years, 11 months ago

Given, Internal radius of hemispherical shell (r) = 3 cm EXternal radius of hemispherical shell (R)= 5 cm Radius of cone = 7 cm volume of hemispherical shell = volume of cone 2/3 × 22/7 { (5×5×5) - (3×3×3) } = 1/3 × 22/7 (7×7) × h 2 { (5×5×5) - (3×3×3)} = 49× h 2 { 125 - 27 } = 49 × h 2 × 98 = 49 × h 196 = 49 × h h = 196 ÷ 49 h = 4 cm

Isha Saini 6 years, 11 months ago

Lekin uska answer wrong h google pe book me alag answer h

Isha Saini 6 years, 11 months ago

Uspe ni h ye question

Isha Saini 6 years, 11 months ago

Plzz koi to iska solution dedo
  • 6 answers

Twinkle Star ( Atul )....... ?? 6 years, 11 months ago

Y

Twinkle Star ( Atul )....... ?? 6 years, 11 months ago

Okkkkk yaar ,chal aaj hi friendship day manate hain

Twinkle Star ( Atul )....... ?? 6 years, 11 months ago

Yaar dil churane wale to bahut hain

Twinkle Star ( Atul )....... ?? 6 years, 11 months ago

मैंने कभी सोचा तक नहीं था की ऐसा दिन भी आएगा मेरे सीने में बैठा दिल किसी और का हो जायेगा

Sachin Kori 6 years, 11 months ago

sabko apni gf dusro se alag hi lgti h

Puja Sahoo? 6 years, 11 months ago

X1+ X2/2 and Y1 +Y2/2.......

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App