No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 6 years, 6 months ago

Let n = 4q + 1 (an odd integer)
{tex}\therefore \quad n ^ { 2 } - 1 = ( 4 q + 1 ) ^ { 2 } - 1{/tex}
{tex}= 16 q ^ { 2 } + 1 + 8 q - 1 \quad \text { Using Identity } ( a + b ) ^ { 2 } = a ^ { 2 } + 2 a b + b ^ { 2 }{/tex}
{tex}= 16{q^2} + 8q{/tex}
{tex}= 8 \left( 2 q ^ { 2 } + q \right){/tex}
= 8m, which is divisible by 8.

  • 3 answers

Twinkle Star ( Atul )....... ?? 6 years, 11 months ago

Oyeee bakwas

Anushka Jugran ? 6 years, 11 months ago

Which distribution??

. . 6 years, 11 months ago

Complete your ques
  • 2 answers

Gaurav Seth 6 years, 11 months ago

 (Draw diagram based on gives conditions. mark E , D,C  points down and A,B points up.)

Tan 60 = AD/ED

 = 1500/ED

ED = 1500

Tan 30 = BC/EC

1/ = 1500√3/EC

DE = EC - ED

4500-1500

= 3000

PLANE TRAVELS 3000 m  in 15 sec.

speed = Dstance/Time

= 3000/15

200 m/s.

Jet plane speed = 200m/s.

Ravi Yadav 6 years, 11 months ago

This ch 9 yes So speed find in plane in tan30 'tan 60 So your answer in give you
  • 2 answers

Samridhi Yadav 6 years, 11 months ago

A= 3, d= 2 hence ap. obtained is 3,5,7 so the sum becomes 15

Puja Sahoo? 6 years, 11 months ago

15
  • 3 answers

Aditi Chaudhary 6 years, 11 months ago

Don't know....

Vidhi Lalwani? 6 years, 11 months ago

If anyone know plzz tell how to tke foto of ques and post in this app?

Nitin Kumar ✨✨?????✨✨ 6 years, 11 months ago

Dont know
  • 1 answers

Sia ? 6 years, 4 months ago


Given: XY and X'Y' at are two parallel tangents to the circle wth centre O and AB is the tangent at the point C,which intersects XY at A and X'Y' at B.
To prove: ∠AOB = 90º .
Construction: Join OC.
Proof:
In ΔOPA and ΔOCA
OP = OC (Radii )
AP = AC (Tangents from point A)
AO = AO (Common )
ΔOPA ≅ ΔOCA (By SSS  criterion)
Therefore, ∠POA = ∠COA .... (1)   (By C.P.C.T)
Similarly , ΔOQB ≅ ΔOCB
∠QOB = ∠COB .......(2)
POQ is a diameter of the circle.
Hence, it is a straight line.
Therefore, ∠POA + ∠COA + ∠COB + ∠QOB = 180°
From equations (1) and (2), it can be observed that
2∠COA + 2∠COB = 180°
∴ ∠COA + ∠COB = 90°
∴ ∠AOB = 90°
Hence proved.

  • 1 answers

?Aryan ? 6 years, 11 months ago

Number systems. 06 Algebra. 20 Coordinate Geometry. 06 Geometry. 15 Trigonometry. 12 Mensuration. 10 Statistics and Probability. 11 TOTAL = 80
  • 5 answers

Avanish Yadav 6 years, 11 months ago

nisha tera galat hai

???????? ???? 6 years, 11 months ago

The Common difference of AP in which a21-a7=84 is 6. a+20d-a+6d=84. 26d=84 d=6

Vishu Joshi 6 years, 11 months ago

a + 20d - a - 6d =84 14 d = 84 d = 84 / 14 d = 6

Avanish Yadav 6 years, 11 months ago

a+20d-a+6d=84 d=6

Puja Sahoo? 6 years, 11 months ago

d=6
  • 5 answers

Pushpa Jha 6 years, 11 months ago

This question post by GK

Pushpa Jha 6 years, 11 months ago

This question are proof by sakuntala devi (mathematics expert)

Riya ? 6 years, 11 months ago

right tanmay.

Tanmay Kumar 6 years, 11 months ago

2-1=1+1 1=2

Sonu Kumar 6 years, 11 months ago

Is this a question or a joke.
  • 1 answers

Sia ? 6 years, 6 months ago

The given equations are
{tex}\frac { a x } { b } - \frac { b y } { a } - ( a + b ) = 0{/tex}
{tex}ax - by - 2ab = 0{/tex}
By cross multiplication, we have
{tex}\frac { x } { \left( - \frac { b } { a } \right) \times ( - 2 a b ) - ( - b ) \times ( - ( a + b ) ) } ={/tex}{tex}\frac { y } { - ( a + b ) \times a - ( - 2 a b ) \times \frac { a } { b } }{/tex}{tex}= \frac { 1 } { \frac { \mathrm { a } } { \mathrm { b } } \times ( - \mathrm { b } ) - \mathrm { a } \times \left( - \frac { \mathrm { b } } { \mathrm { a } } \right) } {/tex}
{tex}\Rightarrow \frac { x } { 2 b ^ { 2 } - b ( a + b ) } = \frac { y } { - a ( a + b ) + 2 a ^ { 2 } } = \frac { 1 } { - a + b }{/tex}
or, {tex}\frac { x } { 2 b ^ { 2 } - a b - b ^ { 2 } } = \frac { y } { - a ^ { 2 } - a b + 2 a ^ { 2 } } = \frac { 1 } { - a + b }{/tex}
{tex}\Rightarrow \frac { x } { b ^ { 2 } - a b } = \frac { y } { a ^ { 2 } - a b } = \frac { 1 } { - ( a - b ) }{/tex}
{tex}\Rightarrow \frac { x } { - b ( a - b ) } = \frac { y } { a ( a - b ) } = \frac { 1 } { - ( a - b ) }{/tex}
{tex}\therefore \frac { x } { - b ( a - b ) } = \frac { 1 } { - ( a - b ) }{/tex} and {tex}\frac { y } { a ( a - b ) } = \frac { 1 } { - ( a - b ) }{/tex}
{tex}\therefore x = \frac { - b ( a - b ) } { - ( a - b ) } \text { and } y = \frac { a ( a - b ) } { - ( a - b ) }{/tex}
{tex} \Rightarrow{/tex} {tex}x = b,\ and\ y = -a{/tex}
{tex}\therefore{/tex} the solution is {tex}x = b, y = -a{/tex}

  • 1 answers

Sia ? 6 years, 6 months ago

LHS {tex}\frac{1}{sec x - tan x}{/tex} - {tex}\frac{1}{cos x}{/tex}
={tex}\frac{sec x + tan x}{(sec x - tan x)(sec x + tan x)}{/tex} - {tex}\frac{1}{cos x}{/tex}
{tex}\frac{secx + tan x}{sec^2 x - tan^2 x}{/tex} - {tex}\frac{1}{cos x}{/tex}
{tex}=sec x + tan x - sec x{/tex}{tex}[\because sec^2\theta-tan^2\theta=1]{/tex}
= tan x
RHS{tex}\frac{1}{cosx - 1}{/tex} - {tex}\frac{1}{sec x + tan x}{/tex}
={tex}\frac{1}{cos x}{/tex} - {tex}\frac{sec x - tan x}{(sec x + tan x)(sec x - tan x)}{/tex}
={tex}\frac{1}{cos x}{/tex} - {tex}\frac{sec x - tan x}{sec^2 x - tan^2 x}{/tex}
= sec x - {tex}\frac{sec x - tan x}{1}{/tex}
{tex}=sec x - sec x + tan x{/tex}
{tex}=tan x{/tex}
Hence, LHS = RHS

  • 4 answers

Aditi Chaudhary 6 years, 11 months ago

Ncert m diya h

Aayushi Gupta 6 years, 11 months ago

This is given in ncert.

Priya Dhamanda 6 years, 11 months ago

use AC^2=AB^2+BC^2

Muskan Singh 6 years, 11 months ago

Rs agarwal me diya h......??
  • 1 answers

Sia ? 6 years, 4 months ago

  1. deg p(x) = deg q(x)
    {tex}p ( x ) = 2 x ^ { 2 } - 2 x + 14{/tex}
    g(x) = 2
    q(x) = x2 - x + 7
    r(x) = 0
    Clearly, p(x) = q(x) {tex} \times {/tex} g(x) + r(x)
  2. deg q(x) = deg r(x)
    {tex}p ( x ) = x ^ { 3 } + x ^ { 2 } + x + 1{/tex}
    {tex}g ( x ) = x ^ { 2 } - 1{/tex}
    q(x) = x + 1
    r(x) = 2x + 2
    Clearly, {tex}p ( x ) = q ( x ) \times g ( x ) + r ( x ){/tex}
  3. deg r(x) = 0
    {tex}p ( x ) = x ^ { 3 } + 2 x ^ { 2 } - x - 2{/tex}
    {tex}g ( x ) = x ^ { 2 } - 1{/tex}
    q(x) = x + 2
    r(x) = 4
    Clearly, {tex}p ( x ) = q ( x ) \times g ( x ) + r ( x ){/tex}
  • 1 answers

Singanamala Viswa Nitish 6 years, 11 months ago

(7)-(12)=-5
  • 3 answers

Manas Shrivastava 6 years, 11 months ago

how to aad pictures..

Alok Singh 6 years, 11 months ago

Bhai ye photo kaise dala isme

Gaurav Seth 6 years, 11 months ago

Let the original number of students be x.

Total budget of the food = Rs 240

Original budget of each student =

If 4 students failed to go to the picnic, then 

Number of student who went to the  picnic = x– 4

New budget of each student =

New budget of each student  – Original budget of each student =  Rs 5

 

  • 1 answers

Sia ? 6 years, 6 months ago

Let the speed of the boat in still water be 'x' km/hr and speed of the stream be 'y' km/

Speed = Distance / Time

{tex}\therefore{/tex} {tex}\frac { 30 } { x - y } + \frac { 28 } { x + y } = 7{/tex}

and {tex}\frac { 21 } { x - y } + \frac { 21 } { x + y } = 5{/tex} 

Let {tex}\frac { 1 } { x - y } \text { be } a \text { and } \frac { 1 } { x + y } \text { be } b{/tex}

30a + 28b = 7  ......(i)

21a + 21b = 5  ......(ii)

Multiplying (i) by 3 and (ii) by 4 and then subtracting.

{tex}90a+84b=21{/tex} ..............(iii)

{tex}84a+84b=20 {/tex} ..............(iv)

By solving (iii) and (iv)

{tex}90a-21=84a-20{/tex}

{tex}\Rightarrow{/tex}6a= 1

{tex}\Rightarrow{/tex} {tex}a = \frac { 1 } { 6 }{/tex}

Putting this value of ,a in eqn., (i),

{tex}30 \times \frac { 1 } { 6 } + 28 b = 7{/tex}

{tex}28 b = 7 - 30 \times \frac { 1 } { 6 } = 2{/tex}

{tex}\therefore{/tex}{tex}b = \frac { 1 } { 14 }{/tex}

x + y = 14 ...(iv)

Now, {tex}a = \frac { 1 } { x - y } = \frac { 1 } { 6 }{/tex}

{tex}\Rightarrow{/tex} x - y = 6 

{tex}\Rightarrow{/tex}x = y + 6 .....(v)

Putting (iv) in (v)

y + 6 + y = 14

{tex}\Rightarrow{/tex} y = 4

Hence, speed of the boat in still water = 10 km/hr and speed of the stream = 4 km/hr.

  • 5 answers

Vidhi Lalwani? 6 years, 11 months ago

Ohh..thnks

Nikita Sharma 6 years, 11 months ago

Ch 1,5,8,14

Adhya Singh 6 years, 11 months ago

Trigonometry identies and triangle ?????

Gurjar Kabir (बैंसला) 6 years, 11 months ago

Only 15 chapters are important in math....

Akash Meena 6 years, 11 months ago

Hi best
  • 1 answers

Gurjar Kabir (बैंसला) 6 years, 11 months ago

In ΔABE and ΔCFB, ∠A = ∠C (Opposite angles of a parallelogram) ∠AEB = ∠CBF (Alternate interior angles as AE || BC) ∴ ΔABE ~ ΔCFB (By AA similarity criterion)
  • 1 answers

Gaurav Seth 6 years, 11 months ago

Sphere: d=21cm hence r=21/2 cm.

vol. of sphere = 4/3 x 22/7 x 21/2 x 21/2 x 21/2

                          =  77 x 3 x 21 = 1617x3 = 4851cm3

Cube: side= 1cm

vol. of cube = a3 = 13 = 1cm3

No. of cubes formed from the sphere= volume of sphere / volume of cube 

                                = 4851/1 = 4851

Hence the number of cubes that can be formed = 4851

  • 2 answers

Puja Sahoo? 6 years, 11 months ago

Present age of jacob will be 40 years, and his son will be 10 years

Gaurav Seth 6 years, 11 months ago

Let us assume Jacob’s current age is x and his son’s current age is y.

Five years hence, Jacob’s age = x + 5 and his son’s age = y + 5

As per question;

x + 5 = 3(y + 5)

Or, x + 5 = 3y + 15

Or, x = 3y + 15 – 5 = 3y + 10

Five years ago, Jacob’s age = x – 5 and his son’s age = y – 5

As per question;

x – 5 = 7(y – 5)

Or, x – 5 = 7y – 35

Or, x = 7y – 35 + 5 = 7y – 30

Substituting the value of x from first equation in this equation, we get;

3y + 10 = 7y – 30

Or, 3y + 10 + 30 = 7y

Or, 7y – 3y = 40

Or, 4y = 40

Or, y = 10

Substituting the value of y in first equation, we get;

x = 3y + 10

Or, x = 3 x 10 + 10 = 40

Hence, Jacob’s age = 40 years and son’s age = 10 years

  • 1 answers

Sia ? 6 years, 4 months ago

Speed of motorboat in still water = 15 km/hr

Let Speed of the stream = x km/ hr

Then speed downstream = (15+x) km /hr

and speed upstream = (15-x) km /hr

According to the question

{tex}{30 \over 15+x} +{30 \over 15-x} = 4{1 \over 2}{/tex}

{tex}\implies 30 [{15 - x +15 +x \over (15+x) (15- x)}] = {9 \over 2}{/tex}

{tex}\implies {30 \times 30 \over 225 - x^2} = {9 \over 2}{/tex}

{tex}\implies {900 \over 225 - x^2} = {9 \over 2}{/tex}

{tex}\implies{/tex}- 9x2 + 2025 = 1800

{tex}\implies{/tex} - 9x2 = 1800 - 2025

{tex}\implies{/tex} 9x2 = 225

{tex}\implies{/tex} x2 = 25

{tex}\implies{/tex} {tex}x = \pm 5{/tex}
Speed of the motorboat cannot be negative. So, x = 5

Hence, speed of the stream = 5 km /hr.

  • 4 answers

Vidhi Lalwani? 6 years, 11 months ago

Figureee?

Lekshmi V S 6 years, 11 months ago

Figure ???

Arohi . 6 years, 11 months ago

Which figure¿

Anushka Jugran ? 6 years, 11 months ago

Where is the figure???
  • 1 answers

Sia ? 6 years, 6 months ago


Given,  {tex}\triangle ABC{/tex} in which {tex}AB = BC = CA{/tex} and D is a point on BC such that BD ={tex}\frac { 1 } { 3 }{/tex}BC.
Prove: 9AD2 = 7AB2.
Construction :Draw {tex}A L \perp B C{/tex} 
Proof: In right triangles ALB and ALC, we have
{tex}AB = AC {/tex}(given)
{tex}AL = AL {/tex}(common)
{tex}\therefore \triangle A L B \cong \triangle A L C{/tex} [by RHS axiom]
So, {tex}BL = CL.{/tex}
Thus, BD ={tex}\frac { 1 } { 3 }{/tex}BC and BL ={tex}\frac { 1 } { 2 }{/tex}BC.
In {tex}\triangle ALB{/tex}{tex}\angle A L B = 90 ^ { \circ }{/tex}
By using pythagoras theorem, we get 
{tex}\therefore{/tex} AB2 = AL2 + BL2 ...(i)
In {tex}\triangle ALD{/tex}{tex}\angle A L D = 90 ^ { \circ }{/tex}
By using pythagoras theorem, we get 
{tex}\therefore{/tex} AD2 = AL2 + DL2 
= AL2 + (BL - BD)2
= AL2 + BL2 + BD2{tex}2 B L \cdot B D{/tex}
= (AL2 + BL2) + BD2{tex}2 B L \cdot B D{/tex}
= AB2 + BD2{tex}2 B L \cdot B D{/tex} [using (i)]
{tex}= B C ^ { 2 } + \left( \frac { 1 } { 3 } B C \right) ^ { 2 } - 2 \left( \frac { 1 } { 2 } B C \right) \cdot \frac { 1 } { 3 } B C{/tex}
{tex}= B C ^ { 2 } + \frac { 1 } { 9 } B C ^ { 2 } - \frac { 1 } { 3 } B C ^ { 2 }{/tex}
{tex}= \frac { 7 } { 9 } B C ^ { 2 } = \frac { 7 } { 9 } A B ^ { 2 }{/tex} [{tex}\because{/tex} BC = AB]
Therefore, 9AD2 = 7AB2.

  • 1 answers

Anshika Pal???? 6 years, 11 months ago

Dude it's easy zero is the answer
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

A copper rod of diameter 2 cm and length 10 cm is drawn into a wire of uniform thickness and length 10 m.We have to find the thickness of the wire.

We know that,
1 m = 1000 mm and 1 cm = 10 mm
Given Diameter of silver rod = 2 cm = 20 mm
{tex}\Rightarrow{/tex} Radius of silver rod (r1) = 1 cm = 10 mm
Length of the silver rod (h1) = 10 cm = 100 mm
Length of the wire (h2) = 10 m = 10000 mm
Let the radius of the wire be r2 cm.
As the wire is made from the rod
{tex}\Rightarrow{/tex}Volume of the rod = Volume of the wire
{tex}\Rightarrow \pi r _ { 1 } ^ { 2 } h _ { 1 } = \pi r _ { 2 } ^ { 2 } h _ { 2 }{/tex}
{tex}\Rightarrow \pi \times ( 10 ) ^ { 2 } \times 100 = \pi \times r _ { 2 } ^ { 2 } \times 10000{/tex}
{tex}\Rightarrow{/tex}10000 = {tex}r _ { 2 } ^ { 2 } \times{/tex}10000
{tex}\Rightarrow{/tex} r22 = 1
{tex}\Rightarrow{/tex} r2= 1 cm
Diameter of the wire (d{tex}_2{/tex}) = 2{tex}\times{/tex}1
= 2mm
Diameter of the wire (d2) = Thickness of the wire = 2mm

  • 5 answers

Sohail Akhtar 6 years, 11 months ago

1 upon 32

Anushka Jugran ? 6 years, 11 months ago

1/32

Purvanshi Yadav 6 years, 11 months ago

1/32

Gurjar Kabir (बैंसला) 6 years, 11 months ago

2/16

Thakurshubhankar Singh 6 years, 11 months ago

1 upon 32

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App