No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Diya Sharma 6 years, 10 months ago

You can solve this question by construction. Than, congruent them by SAS theoram. By CPCT you would be able to know that the lengths of tangents are equal.
  • 3 answers

Aarya Malakar 6 years, 10 months ago

Circumference= 2πr 44=2πr 44=2•22/7•r r=44×7/2×22 r=7cm Area of quadrant=1/4πr2 1/4×22/7×7×7 Area=77/2cm2

Avinash Saigal 6 years, 10 months ago

Let radius be r cm We are given, Circumference, 2πr = 44                           so, πr = 22                         so, 22/7*r = 22                              r = 7 cm So, area of Quadrant = 1/4 * πr²                                    = 1/4 * 22/7 * 7*7                                    = 22*7/4                                    = 154/4 = 38.5 cm² Thank you ??

Anuj Kumar 6 years, 10 months ago

Circumference=2πr=44cm So,. r=7cm Area of the quadrant=1/2πr2 =1/2×22/7×7×7 =77/2cm2.
  • 1 answers

D.J Alok 6 years, 10 months ago

Just practice more and more... Best of luck..????
  • 1 answers

Gungun_ Lalwani? 6 years, 10 months ago

Vry best mango apple
  • 1 answers

Shweta Rao ?? 6 years, 10 months ago

a = 145 b=125 Using Euclid division lemma 145=125*1+20 125=20*6+5 20=5*4=0 So,HCF of 145 or 125 is 5 Hope you found it helpful
  • 7 answers

Aafreen Khan 6 years, 10 months ago

It is P.G.T. theorem not B.P.T.theorem

Divya Yadav 6 years, 10 months ago

BPT theorum...basic propationality theorum...

Gungun_ Lalwani? 6 years, 10 months ago

Ncert me h

Aafreen Khan 6 years, 10 months ago

Ye Pythagoras theorm h

Gungun_ Lalwani? 6 years, 10 months ago

Yaa ye to Pythagoras bhi hp skta h

Sanjana ? 6 years, 10 months ago

I think he want to write BPT theorem

Gungun_ Lalwani? 6 years, 10 months ago

Konsi theorem h...P.g.t. ka full form kya h
  • 0 answers
  • 2 answers

Sant Kumar 6 years, 10 months ago

A cylinder is equal to the base and height of a cone and a hemisphere three, what is the ratio of their volume

Gungun_ Lalwani? 6 years, 10 months ago

Plz write in English and proper language...
  • 1 answers

Kamlesh Jain 6 years, 10 months ago

Vol.of cone +vol.of frustrum 1/3πr²h+1/3(r1²+r2²+r1r2)H 1/3π(r²h+(r1²+r2²+r1rr2)H Then solve by putting value
  • 1 answers

Sia ? 6 years, 4 months ago

Let the original average speed of the train be x km/hr.
Time taken to cover 63 km {tex} = \frac{{63}}{x}{/tex} hours
Time taken to cover 72 km when the speed is increased by 6 km/hr {tex} = \frac{{72}}{{x + 6}}{/tex} hours
By the question,we have,
{tex}\frac{{63}}{x} + \frac{{72}}{{x + 6}} = 3{/tex}
{tex} \Rightarrow \frac{{21}}{x} + \frac{{24}}{{x + 6}} = 1{/tex}
{tex} \Rightarrow \frac{{21x + 126 + 24x}}{{{x^2} + 6x}} = 1{/tex}
{tex} \Rightarrow{/tex} 45x + 126 = x2 + 6x
{tex} \Rightarrow{/tex} x2 - 39x - 126 = 0
{tex} \Rightarrow{/tex} x2 - 42x + 3x - 126 = 0
{tex} \Rightarrow{/tex} x(x - 42) + 3(x - 42) = 0
{tex} \Rightarrow{/tex} (x - 42)(x + 3) = 0
{tex} \Rightarrow{/tex} x - 42 = 0 or x + 3 = 0
{tex} \Rightarrow{/tex} x = 42 or x = -3
Since the speed cannot be negative, {tex}x \ne -3{/tex}.
Thus, the original average speed of the train is 42 km/hr.

  • 1 answers

Durgesh Kumar Singh 6 years, 10 months ago

To a line parallel to another line 1. Draw two lines perpendicular to given line. 2. Cut them with a definite height. 3. Join both point and produce it both side. Hence, Given lines are parallel to each other.??
  • 1 answers

Sanjana ? 6 years, 10 months ago

Complete your question
  • 2 answers

Divya Garg 6 years, 10 months ago

Volume of the rice=1/3pie r^2 h......... .1/3×22/7×12×12×35/10=924cm^3 Here l=12.5cm...... Canvas required= pie×rl........22/7×12×125/10= 471.43cm^2

Vishakha Singh? 6 years, 10 months ago

Vol = 528m^3 Canvas cloth required = 471.42m^2
  • 1 answers

Sia ? 6 years, 4 months ago

According to question{tex}{/tex}, the given  equation  is
x{tex}^2{/tex}(a2 + b2)+ 2x (ac + bd) +(c2 + d2)= 0 .
 {tex}{/tex}Let D be the discriminant of this equation.
Therefore,D = 4(ac + bd)2 - 4(a2 + b2)(c2 + d2)
{tex} \Rightarrow{/tex} D = 4 [(ac+ bd)2 - (a2 + b2) (c2 + d2)]
{tex} \Rightarrow{/tex} D = 4 [a2c2 + b2d2 + 2ac.bd - a2c2 - a2d2 - b2c2 - b2d2]
{tex} \Rightarrow{/tex}D = 4 [2ac.bd - a2d2 - b2c2] = - 4[a2d2 + b2c2 - 2ad.bc] = -4(ad - bc){tex}^2{/tex}
It is given that ad {tex} \neq{/tex} bc.
{tex} \Rightarrow{/tex}  ad - bc {tex} \neq{/tex} 0
{tex} \Rightarrow{/tex} (ad - bc){tex}^2{/tex} > 0
{tex} \Rightarrow{/tex} - 4 (ad - bc){tex}^2{/tex} < 0
{tex} \Rightarrow{/tex} D < 0.
Therefore, given equation has no real root.

  • 1 answers

Sia ? 6 years, 4 months ago

According to the question,
{tex}\frac{m}{n}{x^2} + \frac{n}{m} = 1 - 2x{/tex}
{tex}\Rightarrow \frac{m}{n}{x^2} + 2x + \frac{n}{m} - 1 = 0{/tex}
{tex} \Rightarrow {x^2} + \frac{{2nx}}{m} + \frac{{{n^2}}}{{{m^2}}} - \frac{n}{m} = 0{/tex} [multiplying both sides by 'n' and dividing both sides by 'm']
{tex}\Rightarrow {x^2} + \frac{{2nx}}{m} + \frac{{{n^2} - mn}}{{{m^2}}} = 0{/tex}
To factorize {tex}{x^2} + \frac{{2nx}}{m} + \frac{{{n^2} - mn}}{{{m^2}}}{/tex}, we have to find two numbers {tex}'a'\ and\ 'b'{/tex} such that.
{tex}a + b = \frac{{2n}}{m}{/tex} and {tex}a b = \frac { n ^ { 2 } - m n } { m ^ { 2 } }{/tex}
Clearly, {tex}\frac{{n + \sqrt {mn} }}{m} + \frac{{n - \sqrt {mn} }}{m} = \frac{{2n}}{m}{/tex} and {tex}\frac{{\left( {n + \sqrt {mn} } \right)}}{m}\times\frac{{\left( {n - \sqrt {mn} } \right)}}{m} = \frac{{{n^2} - mn}}{{{m^2}}}{/tex}  ({tex}\therefore a = \frac{{n + \sqrt {mn} }}{m}{/tex} and {tex}b = \frac{{n - \sqrt {mn} }}{m}{/tex})
{tex}\Rightarrow {x^2} + \frac{{2nx}}{m} + \frac{{{n^2} - mn}}{{{m^2}}} = 0{/tex}
{tex} \Rightarrow {x^2} + \frac{{\left( {n + \sqrt {mn} } \right)}}{m}x + \frac{{\left( {n - \sqrt {mn} } \right)}}{m}x{/tex}{tex} + \frac{{{n^2} - mn}}{{{m^2}}} = 0{/tex}
{tex} \Rightarrow x\left[ {x + \frac{{n + \sqrt {mn} }}{m}} \right] + \frac{{n - \sqrt {mn} }}{m}{/tex} {tex}\left[ {x + \frac{{n + \sqrt {mn} }}{m}} \right] = 0{/tex}
{tex} \Rightarrow \left( {x + \frac{{n - \sqrt {mn} }}{m}} \right)\left( {x + \frac{{n + \sqrt {mn} }}{m}} \right) = 0{/tex}
{tex} \Rightarrow x + \frac{{n - \sqrt {mn} }}{m} = 0{/tex} or {tex}x + \frac{{n + \sqrt {mn} }}{m} = 0{/tex}
{tex} \Rightarrow x = \frac{{- n - \sqrt {mn} }}{m}{/tex} or {tex}x = \frac{{ - n + \sqrt {mn} }}{m}{/tex}

  • 2 answers

Jot Virk?♠ 6 years, 10 months ago

Thnx..... but i want the answer with compeleting square method

Aaradhya Anand 6 years, 10 months ago

2x^2 - 2x+x-1 2x(x-1)+1(x-1) (2x+1)(x-1) X=-1/2,x=1
  • 1 answers

Honey ??? 6 years, 10 months ago

No bcoz hcf should be factor of lcm
  • 1 answers

Sangam Tiwari 6 years, 10 months ago

What do i mean by modi ke relative
  • 1 answers

Gungun_ Lalwani? 6 years, 10 months ago

Hows that possible for us to give yu all of them here....refer yur book
  • 2 answers

Puja Sahoo? 6 years, 10 months ago

x= -y or x= -z..........

Honey ??? 6 years, 10 months ago

X=-y and -z

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App