No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Yogita Ingle 6 years, 10 months ago

Let α, β and ɣ be the roots of the cubic polynomial
The cubic polynomial with roots α, β and ɣ is x3 – (α + β + ɣ)x2 + (αβ+ βɣ + ɣα)x – (αβɣ) = 0

  • 1 answers

Chirayu . 6 years, 10 months ago

check ur question
  • 1 answers

Sia ? 6 years, 4 months ago

Factorization of 250 =2×5×5×5 ={tex} 2 \times 5 ^ { 3 }{/tex}
Therefore, sum of exponents = 1 + 3 = 4

  • 1 answers

Chirayu . 6 years, 10 months ago

divide 39220 by 196 then divide the devisor with the reminder and repeat this until ur reminder is 0.
  • 3 answers

Madhav Maheshwari 6 years, 10 months ago

Ratio of perimeter of similar triangles is equal to the ratio of their corresponding sided

Parth Raii???? 6 years, 10 months ago

4 cm..

Puja Sahoo? 6 years, 10 months ago

AC=4cm............
  • 2 answers

Puja Sahoo? 6 years, 10 months ago

First find length of each sides of ∆ Let A( 4 , 0) B(0, 0) and C (0 , 3) use distance formula, AB =√(4²+0) =4 BC= √(0+3²) = 3 CA =√(4²+3²) =5 now , perimeter of ∆ = 3 + 4 + 5= 12 unit........, hope it will help you.....??

Puja Sahoo? 6 years, 10 months ago

12 unit
  • 2 answers

Gurudhan Sathish 6 years, 10 months ago

Yes mam,You are correct but by taking m:n u can prove mam

Puja Sahoo? 6 years, 10 months ago

We need to prove the points (3,-2),(5,2) and(8,8) are collinear. A=(3,-2) B=(5,2) C=(8,8) Let The points B divides AC in the ratio of k+1 Then the coordinates will be, (8k+2/k+1,8k+5/k+1) Coordinates of B are (4,6) Comparing we get, 8k+2/k+1=4 and 8k+5/k+1=6 8k+2=4k+4 and 8k+5=6k+6 4k=2 and 2k=1 k=2/4 and k=1/2 k=1/2 and k=1/2 Value of k is same in both x and y directions.Therefore Points A,B,C are collinears. hope it helps u....
  • 1 answers

Gurudhan Sathish 6 years, 10 months ago

This can derive by the concept of Osculator.
  • 1 answers

Gurudhan Sathish 6 years, 10 months ago

Yes...We can find ,by setting h value maximum divisor of all deviation.
  • 1 answers

Gurudhan Sathish 6 years, 10 months ago

If the divisor is not linear polynomial we are unable to apply R.T and F.T ,so we can convert given polynomial into linear factors
  • 2 answers

Gurudhan Sathish 6 years, 10 months ago

BPT does not explain lengths of parallel sides in a triangle.To over come this we have concept of Criteria for similarity b/w Triangles

Puja Sahoo? 6 years, 10 months ago

Kya, BPT theorem ka drawback bhi hai.....?
  • 1 answers

D.J Alok 6 years, 10 months ago

Complete your question.....
  • 0 answers
  • 0 answers
  • 1 answers

Chirayu . 6 years, 10 months ago

Ch- 1 (6 marks) 3 question total Ch- 2,3,4,5 (20marks) 8 question total Ch-7 (6 marks) 3 queston total Ch- 8,9 (12 marks) 4 question total Ch- 6,10,11 (15 marks) 5 question total Ch 12,13 (10 marks) 3 question total Ch- 14, 15 (11 marks) 4 question total
  • 1 answers

Paulo Dybala 6 years, 10 months ago

25x^4 - 20x^2 + 4=0 25x^4 - 10x^2 - 10x^2 +4 =0 5x^2(5x^2 - 2) - 2(5x^2 - 2) = 0 (5x^2 -2 ) , (5x^2 - 2 ) = 0 x^2 = 2/5 , x^2 = 2/5 x = √2/5 ,. x= √2/5
  • 2 answers

Yogita Ingle 6 years, 10 months ago

(z -3)(z + 3) (z - 2)(z + 2) = 0
z = 3,-3,2 or -2

Yogita Ingle 6 years, 10 months ago

z4 - 9z2 - 4z2 + 36 = 0
z2 (z2 - 9) - 4(z2 - 9) = 0
(z2 - 9) (z2 - 4) = 0
(z - 9) (z + 9) (z - 4)(z + 4) = 0
z = 9,-9, 4 and -4

  • 1 answers

Yogita Ingle 6 years, 10 months ago

z4 - 10z2 + 9 = 0
z4 - 9z2 - 1z2 + 9 = 0
z2 (z2 - 9) -1(Z2 - 9) = 0
(z2 - 9) (z2 - 1) = 0
(z -3) (z+3) (z - 1) (z + 1) = 0
z = -3, 3, 1, -1

  • 2 answers
Hey... I think this can be ur answer!! Polynomial - x2 - 2kx - 6 =0 P (3)=(3)2 - 2(3)k =6 =9 - 6k =6 =-6k =-3 =k =1/2 Hope it helps you dear ☺️☺️

Dhirendra Behera 6 years, 10 months ago

The value of k will be 1
  • 1 answers

Sia ? 6 years, 4 months ago

Let a be the first term and d be the common difference of the given A.P. Then,
S= n
{tex} \Rightarrow \quad \frac { m } { 2 } \{ 2 a + ( m - 1 ) d \} = n{/tex}
{tex}\Rightarrow{/tex} 2am + m (m - 1) d = 2n ...(i)
and, Sn = m
{tex}\Rightarrow \quad \frac { n } { 2 } \{ 2 a + ( n - 1 ) d \} = m{/tex}
{tex}\Rightarrow{/tex} 2an + n (n -1)d = 2m ...(ii)
Subtracting equation (ii) from equation (i), we get
2a (m - n) + {m (m -1) - n (n - 1)} d = 2n - 2m
{tex}\Rightarrow{/tex} 2a (m - n) + {(m2 - n2) - (m - n)} d = -2 (m - n)
{tex}\Rightarrow{/tex} 2a + (m + n -1) d = - 2 [On dividing both sides by (m - n)] ...(iii)
Now, {tex}S _ { m + n } = \frac { m + n } { 2 } \{ 2 a + ( m + n - 1 ) d \}{/tex}
{tex}\Rightarrow \quad S _ { m + n } = \frac { ( m + n ) } { 2 } ( - 2 ){/tex} [Using (iii)]
{tex}\Rightarrow{/tex} Sm+n = - (m + n)

  • 1 answers

Sia ? 6 years, 4 months ago

Given : {tex}\triangle \mathrm{ABC}{/tex} is right angle at B
To prove:  {tex}A C^{2}=A B^{2}+B C^{2}{/tex}

Construction: Draw {tex}B D \perp A C{/tex}

Proof:In {tex}\triangle{/tex}ABC and {tex}\triangle{/tex}ABD

{tex}\angle{/tex}ABC={tex}\angle{/tex}ADB=90

{tex}\angle{/tex}A is common 

{tex}\angle{/tex}ABC{tex}\sim{/tex}{tex}\angle{/tex}ADB
{tex}\Rightarrow \frac{A D}{A B}=\frac{A B}{A C}{/tex}
{tex}\Rightarrow{/tex} AD. AC = AB2 ...(i)
Similarly {tex}\Delta \mathrm{BDC} \sim \Delta \mathrm{ABC}{/tex}
{tex}\Rightarrow \frac{C D}{B C}=\frac{B C}{A C}{/tex}
{tex}\Rightarrow{/tex} CD.AC = BC2 ...(ii)
Adding (i) and (ii) 
AD.AC + CD. AC= AB2 + BC2
AC(AD + CD) = AB2 + BC2
AC {tex}\times{/tex} AC = AB2 + BC2
AC2 = AB2 + BC2
Hence Proved

  • 4 answers

Dhirendra Behera 6 years, 10 months ago

Length of the sector will be 55cm. Area of the sector will be 577.5cm square.

Gaurav Seth 6 years, 10 months ago

Here, we have
r = 21 cm and ө = 120°
Let OACBO is the given sector and  is the given length of arc, then 


(i) The length of the arc (ACB)


(ii) Area of sector (OACBO)

Krishna Goyal 6 years, 10 months ago

Area of sector =577.5

Krishna Goyal 6 years, 10 months ago

Length of sector =55.00004
  • 1 answers

Gaurav Seth 6 years, 10 months ago

No , (x - 2) cannot be the remainder on division of a polynomial p(x) by(2x +3) Because degree of remainder must be less than degree of divisor. Here degree of x-2 and 2x-3 is same that is 1.

  • 1 answers

Sia ? 6 years, 4 months ago


Radius of base of frustum = 13 m (R)
Radius of base of conical cap = 7 m (r)
Slant height of conical cap = 12 m (l)
height of frustum = 8 m (h)
Slant height of frustum
{tex}L = \sqrt { n ^ { 2 } + ( R - r ) ^ { 2 } }{/tex}
{tex}\Rightarrow \quad L = \sqrt { ( 8 ) ^ { 2 } + ( 13 - 7 ) ^ { 2 } }{/tex}
{tex}\Rightarrow \quad L = \sqrt { 64 + 36 } = \sqrt { 100 } = 10 \mathrm { m }{/tex}
therefore, Canvas required for the tent = Curved Surface area of cone + Curved Surface area of the frustum
{tex}= \pi rl + \pi L ( R + r ){/tex}
{tex}= \frac { 22 } { 7 } \times 7 \times 12 + \frac { 22 } { 7 } \times 10 ( 13 + 7 ){/tex}
{tex}= \frac { 22 } { 7 } \times 84 + \frac { 22 } { 7 } \times 10 \times 20{/tex}
{tex}= \frac { 22 } { 7 } ( 84 + 200 ){/tex}
{tex}= \frac { 22 } { 7 } \times 284{/tex}
= 892.57 m2

  • 3 answers

Pratibha Sahu 6 years, 10 months ago

5/8

Akshaya Chandrasekar 6 years, 10 months ago

Possible outcomes= 8 (H,H,H) (H,T,T) (T,T,T) (T,T,H) (T,H,T) (H,T,H) (H,H,T) (T,H,H) Probability of getting two heads = 4 (H,H,H) (H,H,T) (H,T,H) (T,H,H) Therefore, probability of getting two heads = 4÷8 = 1÷2
1/2
  • 2 answers

Paulo Dybala 6 years, 10 months ago

From given eqn 1 SinA = √2 cosA - cos A SinA = cosA(√2 - 1) SinA /√2-1 = cosA Rationalising SinA × √2 + 1 ----------------------- = cosA √2 - 1 × √2 +1 √2 sinA + sinA. = CosA ------------------------- 2 - 1 √ 2 sinA =. CosA - SinA Hence proved?

Nishihoney Lodha 6 years, 10 months ago

By squaring both sides: (cosA+sinA)2=(√2cosA)2 By adding (cosA +sinA)2 +( cosA -sinA)2----------->cos2A+sin2A+2cosAsinA+cos2A+sin2A-2cosAsinA---------->cos2A+sin2A+cos2A+sin2A------>1+1=2. Now,(cosA-sinA)2=2-(cosA+sinA)2-------->so, (cosA-sinA)2=2-2cos2A------>(cosA-sinA)2=2(1-cos2A)------>(cosA-sinA)2=2sin2A-------->(cosA-sinA)=√2sinA.... Hence,proved. (Here 2 is the power.)
  • 2 answers

Diya Sharma 6 years, 10 months ago

3median =2mean + mode

Anushka ??? 6 years, 10 months ago

There is an empirical relationship between the three measures of central tendency: 3Median = Mode + 2Mean.

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App