No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 4 answers

Somil Modi 6 years, 10 months ago

d= -4 , a7 = a+6d = 4 ------(1) Put " d = -4" in eq (1) we get---- a +[6][-4] = 4 a=24+4 a=28

Mehakdeep Kaur 6 years, 10 months ago

D=-4 A7=4 A+6d=4 A+6(-4)=4 A-24=4 A=4+24 A=28

Yogita Ingle 6 years, 10 months ago

a + 6 (–4) = 4

⇒ a = 28

Detailed Answer :

Given d = – 4 and a7 = 4

We know that nth term of A.P. is

an = a + (n – 1)d

a7 = a + (7 – 1)d      [n = 7]

4 = a + 6(– 4)

∴ a = 4 + 24 = 28 

∴ First term of an A.P. = 28.

Puja Sahoo? 6 years, 10 months ago

a=28....
  • 2 answers

Rohit Keshri 6 years, 10 months ago

Sol- let, √5 be rational no. Then, it is in the form of p/q where q not equals to zero and P and q are co-prime. √5=p/q On squaring both side- 5=p²/q² 5q²=p² ____eqation (1) Since, 5 divides p² Therefore, 5 divides p Again, Let, p=5c On squaring both side, P²=25c² 5q² =25c² from equation 1 q² =5c² Since, 5 divides q² Therefore, 5 divides q Since, 5 is the common factor . Therefore, this contradiction Therefore, √5 is an irrational no.

Shivansh Sharma 6 years, 10 months ago

Yes
  • 3 answers

Puja Sahoo? 6 years, 10 months ago

Required ratio is 6:7 and the coordinates of the point of division are (-34/13 , 0)........

Riya Pal 6 years, 10 months ago

Ratio=3:2, Point of divison=-11/5

Satendra Singh 6 years, 10 months ago

The x axis divide the line segment in 6:7 and co-ordinate of point of division are(-34/13,0)
  • 1 answers

Sia ? 6 years, 4 months ago

Factors of x2 + 7x + 12 :
x2 + 7x + 12 = 0
{tex}\Rightarrow{/tex} x2 + 4x + 3x + 12 = 0
{tex}​​\Rightarrow{/tex} x(x + 4) + 3(x + 4) = 0
{tex}​​\Rightarrow{/tex}(x + 4) (x + 3) = 0
{tex}​​\Rightarrow{/tex} x = - 4, -3 ...(i)
Since p(x) = x4 + 7x3 + 7x2 + px + q
If p(x) is exactly divisible by x2+ 7x + 12, then x = - 4 and x = - 3 are its zeroes. So putting x = - 4 and x = - 3.
p(- 4) = (- 4)4 + 7(- 4)3 + 7(- 4)2 + p(- 4) + q
but p(- 4) = 0
{tex}\therefore{/tex} 0 = 256 - 448 + 112 - 4p + q
0 = - 4p + q - 80
{tex}\Rightarrow{/tex}4p - q = - 80 ...(i)
and p(-3) = (-3)4 + 7(-3)3 + 7(-3)2 + p(-3) + q
but p(-3) = 0
{tex}\Rightarrow{/tex}0 = 81-189 + 63 - 3p + q
{tex}\Rightarrow{/tex}0 = -3p + q -45
{tex}\Rightarrow{/tex}3p -q = -45 ..........(ii)

On putting the value of p in eq. (i),we get,
{tex}4(-35) - q = - 80{/tex}
{tex}\Rightarrow{/tex}{tex}-140 - q = - 80{/tex}
{tex}\Rightarrow\ {/tex}{tex}-q = 140 - 80{/tex}
{tex}\Rightarrow\ {/tex} {tex}-q = 60{/tex}
{tex}\therefore{/tex} {tex}q = -60{/tex}
Hence, p = -35, q = -60

  • 1 answers

Gungun_ Lalwani? 6 years, 10 months ago

Whats ur ques????? Plz write it clearly
  • 1 answers

Sia ? 6 years, 4 months ago

Given: PQR is a triangle right angled at P and M is a point on QR such that PM {tex} \bot {/tex} QR
 
To prove PM2 = QM.MR
Proof: In right triangle PQR,
QR2 = PQ2 + PR2 (1).............[By Pythagoras theorem]
In right triangle PMQ,
PQ2 = PM2 + MQ2 (2)...........[By Pythagoras theorem]
In right triangle PMR,
PR2 = PM2 + MR2 (3) ............[By Pythagoras theorem]
Using (2) and (3), (1) gives
QR2 = (PM2 + MQ2) + (PM2 + MR2)
{tex}\Rightarrow {/tex} QR2 = 2PM2 + MQ2 + MR2
=(MQ + MR)2 = 2PM2 + MQ2 + MR2
{tex}\Rightarrow {/tex} MQ2 + MR2 + 2MQ.MR
= 2PM2 + MQ2 + MR2
{tex}\Rightarrow {/tex} PM2 = QM.MR
A litre.
In
{tex}\triangle {/tex}QMP and {tex}\triangle {/tex}PMR,
{tex}\angle{/tex} QMP= {tex}\angle{/tex} PMR......[Each equal to 90o]
{tex}\angle{/tex}MQP {tex} \sim {/tex} {tex}\angle{/tex}PMR.......AA similarity criterion
{tex}\therefore \frac{{QM}}{{PM}} = \frac{{PM}}{{RM}}{/tex} {tex}\therefore {/tex} corresponding sides of two similar triangles
{tex}\Rightarrow {/tex} PM2 = QM.RM
{tex}\Rightarrow {/tex} QM.MR

  • 3 answers

Mehakdeep Kaur 6 years, 10 months ago

Ncert(example question also)

Kajal Singh 6 years, 10 months ago

Ncert, previous year questions, all theorems,. Sample paper
NCERT
  • 1 answers
ON solving the above equation we have a quadratic equation   (a+b)x^2+(a+b)^2x+ab(a+b) on solving the above equation by formula -b+root over(b^2-4ac) and -b-root over(b^2-4ac) we got -a and -b as roots.
  • 1 answers

Puja Sahoo? 6 years, 10 months ago

A, proved statement..........
  • 3 answers

Shivam Tripathi 6 years, 10 months ago

Give me some hint to solve it

Nisha Kanchan 6 years, 10 months ago

put 6in X in equation

Puja Sahoo? 6 years, 10 months ago

K=3
  • 1 answers

Yash Kanchan 6 years, 10 months ago

Cosec-sin×sec-cos =lhs cosec-1/cosec×sec-l/sec=cosec2 -1/cosec ×sec2-1/sec=cot2/cosec×tan2/sec=cos2/sin2/1/sin×sin/cos2/1/cos=sin×cos RHS=1/sin/cos+cos/sin=sin2+cos2/sin×cos=sin×cos LHS=RHS 2is square
  • 2 answers

Shivam Tripathi 6 years, 10 months ago

( a - b)(a^2 + b^2 + ab) ,,,,,,,,or,,, ,,,,,, a^3 + b^3 +3a^2b + 3ab^2,,,,,, (^= power)

Purvanshi Yadav 6 years, 10 months ago

(a+b)3= a3+ b3+ 3a2b+ 3ab2
  • 4 answers

Madhur Dubey ??? 6 years, 10 months ago

Where is the given figure

Puja Sahoo? 6 years, 10 months ago

Shayad question adhura hai, plz check it again

Shivam Tripathi 6 years, 10 months ago

Anyone can solve

Prakriti Tyagi 6 years, 10 months ago

How to solve this
  • 3 answers

Madhur Dubey ??? 6 years, 10 months ago

Yes,1+1=12 but only because of typing mistake ??????????

Harmanjot Singh 6 years, 10 months ago

1+1+10=12

Harmanjot Singh 6 years, 10 months ago

You want to add 10 in this equation ??????
  • 2 answers

Yogita Ingle 6 years, 10 months ago

sin θ = 3/5
tanθ = 3/4
cosec θ = 1/sinθ = 5/3

Sec θ = 1/cos = 5/4
Cot θ = 1/tan = 4/3

Honey ??? 6 years, 10 months ago

Here p=3 ,b=4 and h=5 now use trigo ratios sin=p/h ,tan=p/b and so on.......
  • 2 answers

Yogita Ingle 6 years, 10 months ago

2x + 5 x = 0
7x = 0
x = 0/7
x = 0

Honey ??? 6 years, 10 months ago

0
  • 2 answers
Its given in NCERT please read it

Honey ??? 6 years, 10 months ago

It is in the book.
  • 2 answers

Diksha Chawla 6 years, 10 months ago

your question is incomplete 

7sin²θ + 3cos²θ = 4 7sin²θ + ౩(1-sin²θ) = 4 7sin²θ+3-3sin²θ = 4 4sin²θ+3 = 4 4sin²θ=1 sin²θ = 1/4 sinθ = +1/2 sinθ = +  π/6 Therefore tan θ = + π/6 then we get tan θ = + 1/√3   As the required answer is tan θ = + 1/√3 (here we considered  θ =+ π/6
  • 3 answers

Chetna Saini 6 years, 10 months ago

Please reply sis

Chetna Saini 6 years, 10 months ago

Yes I done it

Diksha Chawla 6 years, 10 months ago

As sin 45 degree is 1/√2 so sin square 45degree is (1/√2)^2= 1/2 and its 4times become 2.......... Eq(1)

Similarly tan sqare 60 become 3 ..... Eq(2)

And cosec square 30 become 2.... Eq  (3)

 

On adding all these equations as required in question 

We get

2+3+2 = 7

  • 2 answers

Chirag Mantri 6 years, 10 months ago

Cuboid => √(l^2 + b^2 + h^2)

Yogita Ingle 6 years, 10 months ago

The main diagonal of any cube can be found my multiplying the length of one side by the square root of 3.
Diagonal of cube = √ 3 × side

  • 1 answers

Gaurav Seth 6 years, 10 months ago

 

Given ABC and ADE are equilateral triangles. Let AB=BC=CA = a Recall that the altitude of an equilateral triangle is √3/2 times its side Hence AD = √3a/2ΔABC  ~ ΔADE [By AAA similarity criterion] [Since ratio of areas of two similar triangles is equal to the ratio of their                                                   corresponding sides] 

Hence area(ADE):area(ABC)=3:4.

  • 1 answers

Abhinav Dutta 6 years, 10 months ago

Let the zerors be x and y Sum of zeros= x+y = -p Product of zeroes= xy = 45 A.T.Q ( x-y)2 = 144 x2 + y2 -2xy = 144 We write x2+y2 as (x+y)2 -2xy (x+y)2 -2xy -2xy = 144 (x+y)2 -4xy = 144 On putting above values (-p)2 -4(45) = 144 p2 -180 = 144 p2 = 144+ 180 p2 = 324 p = √324 p = 18
  • 1 answers

Sneha Singh 6 years, 10 months ago

Seee on this app ncert solutions u will get the answer
  • 1 answers

Asmita Joshi 6 years, 10 months ago

a1/a2=2/2a b1/b2=3/(a+b) c1/c2=7/28 In the case of infinitely many solutions, a1/a2=b1/b2=c1/c2 Therefore, 2/2a=7/28 -> 1/a=1/4 -> a=4 Also, 3/a+b=7/28 where a=4 -> 3/4+b=1/4 -> 12=4+b -> b=12-4 -> b=8
  • 1 answers

. . 6 years, 10 months ago

Given PQ=3cm and PR=6cm. So, PQ/PR =sinR Sin R=3/6=1/2 And sin at 30° is 1/2 so angle PRQ = 30 ° therefore angle QPR = 60 ° [Bcs sin P = QR/PR
  • 1 answers

Asmita Joshi 6 years, 10 months ago

Area of quadrilateral = Area of right triangle1 + Area of right triangle2 1/2*b1*h1 + 1/2*b2*h2 1/2*8*9 + 1/2*5*12 ( 36 + 30 ) m2 66 m2

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App