No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 3 answers

Aayushi Gurjar 6 years, 10 months ago

1.29 is answer

Sova Suravi 6 years, 10 months ago

2 is also the answer.how?

J ??? 6 years, 10 months ago

2,3,5,7,11,13,17,19,23, 29..??
  • 1 answers

Abhishek Jain 6 years, 10 months ago

Last value after = is also whole square
  • 1 answers

Honey ??? 6 years, 10 months ago

It is in the book
  • 3 answers

Divya Yadav 6 years, 10 months ago

15

Honey ??? 6 years, 10 months ago

Its 15th trm. Apply the formula An=A+(n-1)D

Honey ??? 6 years, 10 months ago

15
  • 3 answers

Mamta Singh 6 years, 10 months ago

Your que is not clear

Sagar Singh 6 years, 10 months ago

I ? it's a complex calculus

Gungun_ ?? 6 years, 10 months ago

What is this? Yur ques is not clear
  • 5 answers

Mona Sharma ? 6 years, 10 months ago

Father's age is 40 years and of son is 10yrs.

Honey ??? 6 years, 10 months ago

40 and 10 yrs

Sneha Singh 6 years, 10 months ago

Wait for few minutes i will give u answer of this question

Sagar Singh 6 years, 10 months ago

Give answer plz. Is there not a single person to give answer of this question .friends plz it's important

Sagar Singh 6 years, 10 months ago

I hope u all will try this
  • 1 answers

Paras ? ? Shah ? ? 6 years, 10 months ago

Theorm : In a right triangle, the sq. Of the hyp. is equal to the sum of the sq. Of the other two sides. Proof : In a right ∆ ABC right angled at B. Prove : AC ka 2 = AB ka 2 + BC ka 2 BD is parrallel to AC ∆ADB ~ ∆ ABC AD/AB = AB/AC ( side are propotional) AD.AC = AB ka 2 ∆BDC ~∆ABC CD/BC =BC / AC CD. AC = BC ka 2 AD.AC. + CD.AC = AB ka 2 + BC ka 2 AC (AD + CD) = AB ka 2 + BC ka 2 AC.AC. = AB ka 2 + BC ka 2 AC ka 2 = AB ka 2 + BC ka 2
  • 0 answers
  • 4 answers

Sneha Singh 6 years, 10 months ago

N/2{2a+(n-1)d}

Paras ? ? Shah ? ? 6 years, 10 months ago

The nth term of an AP with first term (a) and common difference (d) an = a+(n-1)d an is also called the genral term of the AP. If there are n terms in the AP, then (an ) represents the last term l

Da Ya 6 years, 10 months ago

N/2[2a+<n-1>d]

Da Ya 6 years, 10 months ago

N/2[2a-<n-1>d]
  • 1 answers

Honey ??? 6 years, 10 months ago

Put the value of x in the eqn. and then solve it u will get the answer?????????????????????????
  • 1 answers

Anjali Mishra?? 6 years, 10 months ago

Given:Sm=2m^2+3m Tm=Sm-Sm-1 Tm=2m^2+3m-2(m-1)^2+3(m-1) Tm=2m^2+3m-2m^2-2+4m+3m-3 Tm=10m-5 T2=10(2)-5 T2=15
  • 1 answers

Sneha Singh 6 years, 10 months ago

Let root 5 be a rational number Then, √5= a/b Now by squaring both sides 5= a²/b² = 5b² = a²............(1) Here 5 divides a², Therefore 5 also divides a. Now let a= 5c where c is an integer Now by squaring both side, = A²= 25c² = 5b² = 25c². ( A²= 5b² from above) = B² = 5c² Here 5 divides b square Therefore 5 also divides b. Here a and b both have common factor 5 So our assumption was wrong Therefore root 5 is an irrational number
  • 1 answers

Rakesh Kumar Tiwari 6 years, 10 months ago

cosec(A+B)/2 = cosec(180-C)/2. [since A+B+C=180] = cosec (180/2 - C/2) = cosec (90 - C/2) = sec C/2
  • 1 answers

Sia ? 6 years, 4 months ago

According to the question,the well of diameter 4 metre is dug 14 metre deep.
We are given that, Depth of well = 14 m, radius = 2 m.
Volume of earth taken out {tex}= \pi r ^ { 2 } h{/tex}

{tex}= \frac { 22 } { 7 } \times 2 \times 2 \times 14{/tex}

{tex}= 176 m ^ { 3 }{/tex}

Let r be the width of embankment,then

the radius of outer circle of embankment = 2 + r

Area of upper surface of embankment {tex}= \pi \left[ ( 2 + r ) ^ { 2 } - ( 2 ) ^ { 2 } \right]{/tex}

Volume of embankment = Volume of earth taken out

or, {tex}\pi \left[ ( 2 + r ) ^ { 2 } - ( 2 ) ^ { 2 } \right] \times 0.4 = 176{/tex}

or, {tex}\pi[4 + r^2 + 4r-4] \times 0.4 = 176{/tex}

or, {tex}r ^ { 2 } + 4 r = \frac { 176 \times 7 } { 0.4 \times 22 }{/tex}

or, {tex}r ^ { 2 } + 4 r = 140{/tex}

or, {tex}r ^ { 2 } + 4 r - 140 = 0{/tex}

or, {tex}( r + 14 ) ( r - 10 ) = 0{/tex}

or, r = 10 m  [as radius can't be negative]

Hence width of embankment = 10 m.

  • 1 answers

Sia ? 6 years, 4 months ago

Let the average speed of truck be x km/h.
{tex}\frac { 150 } { x } + \frac { 200 } { x + 20 } = 5{/tex}
or, 150x + 3000 + 200x = 5x(x + 20)
or, {tex}x ^ { 2 } - 50 x - 600 = 0{/tex}
or, {tex}x ^ { 2 } - 60 x + 10 x - 600 = 0{/tex}
or, {tex}x ( x - 60 ) + 10 ( x - 60 ) = 0{/tex}
or, (x-60)(x + 10) = 0
or, x = 60 ; or x = -10
as, speed cannot be negative
Therefore, x=60 km/h
Hence, first speed of the truck = 60 km/h

  • 0 answers
  • 1 answers

Sankalp Awasthi 6 years, 10 months ago

Bt tangent circle ki radius ke context me 90 hai....so surely it will be 90 degree...
  • 1 answers

Rakesh Kumar Tiwari 6 years, 10 months ago

PA×PB=PT² = 5× PB = 10² = PB = 100/5= 20 Then AB = 20-5= 15 cm
  • 5 answers

Thirsha Udhayakumar 6 years, 10 months ago

a+16d=a + 9d +7 a+16d-a - 9d=7 7d=7 d=1

Honey ??? 6 years, 10 months ago

You too

Puja Sahoo? 6 years, 10 months ago

Super fast.....???

Puja Sahoo? 6 years, 10 months ago

d=1

Honey ??? 6 years, 10 months ago

1
  • 2 answers

Rakesh Kumar Tiwari 6 years, 10 months ago

Sum of zeroes= -b/a = -12+X= -7/1 = X = -7+12=5

Honey ??? 6 years, 10 months ago

5
  • 2 answers

Yash Mulik 6 years, 10 months ago

Take a7/a3 = 12/5 you will get valuez then put those values in second part ?

Honey ??? 6 years, 10 months ago

10:3
  • 0 answers
  • 1 answers

Lalit Choudhary 6 years, 10 months ago

Total ball = 12 No. Of balck ball = x P(e) = x /12 Now, 12 black ball are added Total ball = 24 Now, black ball = x + 12 P(e) = x+12/24 Now, according to the question, X+12/24=2×x/12 X+12/24×6=x X+12=4 X=4

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App