No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Gaurav Seth 6 years, 10 months ago

Explanation: Use one of the Pythagorean identity namely,

sec2A=1+tan2A

 sec4A−sec2A
=(sec2A)2−sec2A
=(1+tan2A)2−(1+tan2A)
=1+2tan2A+tan4A−1−tan2A

=tan4A+tan2A

  • 2 answers

Ritika Bisht 6 years, 10 months ago

Your answer is 2/3

Kritisha 04 6 years, 10 months ago

Simplify tanA + cotA in terms of sinA and cosA U will get 1/sinA . 1/cosA SinA + cosA = 2 Squaring both sides gives Sin^2A + cos^2A + 2sinA.cosA = 4 1 + 2 sin A.cosA = 4 SinA. CosA = 3/2 1/sinA. 1/cosA = 2/3 TanA + cotA = 2/3
  • 3 answers

Khushboo Giri 6 years, 10 months ago

Ratio=1:1 M=0 P(4,0)

Honey ??? 6 years, 10 months ago

m=0

Honey ??? 6 years, 10 months ago

1:1
  • 4 answers

Krish Kapadia 6 years, 10 months ago

K=3 and k=-1

Honey ??? 6 years, 10 months ago

For real and equal roots d=b sq. -4 ac nikal lena usse k ki value nikal jayegi

Jitendra Yadav 6 years, 10 months ago

Give me complete solve answer

Honey ??? 6 years, 10 months ago

K+1 ke baad x lgta hain reh gaya , isiliye answer k=5,-3 value put krke dekh lena ho skta 1 value satisfy na ho
  • 1 answers

Vipul Pyati 6 years, 10 months ago

First find all the distances by distances formle n then find its diagonals if the sides r same n diagonls r equal then its. Squarw
  • 3 answers

Nikhil Chauhan 6 years, 10 months ago

Let time taken by first pipe = x min. So, time taken by second pipe = x+3 min. Now, Cistern fill in 1hr by first pipe= 1/x And cistern fill in 1hr by second pipe= 1/x+3 So, Acc. To que. = 1/x + 1/x+3 = 1/40/13 = x+x+3/x^2+3x = 13/40. (LCM) =2x+3/x^2+3x = 13/40 =13x^2+39x = 80x+120 =13x^2- 41x- 120=0 On solving this equation we get, x=5 and x=-24/13 It is not possible So, Time taken by first pipe=5 min. And time taken by second pipe=5+3 =8 min.

Sneha Singh 6 years, 10 months ago

Can u please solve it fully

Anchal Kaurav 6 years, 10 months ago

smaller 5 larger 8
  • 4 answers

Ritika Bisht 6 years, 10 months ago

Nth term is 4

Krish Kapadia 6 years, 10 months ago

N term is -5 (n+5)

Anchal Kaurav 6 years, 10 months ago

n term -5 n-5

Vardhan Pandey 6 years, 10 months ago

Nth term= -10-5n
  • 1 answers

Sia ? 6 years, 6 months ago

You can check the pattern here : <a href="https://mycbseguide.com/cbse-syllabus.html">https://mycbseguide.com/cbse-syllabus.html</a>

  • 3 answers

Anchal Kaurav 6 years, 10 months ago

6 cm

Shivam Kumar Jha 6 years, 10 months ago

You are right

Rounak Jha 6 years, 10 months ago

QR is 6cm
  • 1 answers

Sia ? 6 years, 6 months ago

Given, 
tan A = n tan B
{tex} \Rightarrow{/tex} tanB = {tex}\frac{1}{n}{/tex}tan A
{tex}\Rightarrow{/tex} cotB = {tex}\frac { n } { \tan A }{/tex}..........(1)
Also given, 
sin A = m sin B
{tex}\Rightarrow{/tex} sin B = {tex}\frac{1}{m}{/tex}sin A
{tex}\Rightarrow{/tex} cosec B = {tex}\frac { m } { \sin A }{/tex}.....(2)
We know that, cosec2B - cot2B = 1, hence from (1) & (2) :-
{tex} \quad \frac { m ^ { 2 } } { \sin ^ { 2 } A } - \frac { n ^ { 2 } } { \tan ^ { 2 } A } = 1{/tex}
{tex}\Rightarrow \quad \frac { m ^ { 2 } } { \sin ^ { 2 } A } - \frac { n ^ { 2 } \cos ^ { 2 } A } { \sin ^ { 2 } A } = 1{/tex}
{tex}\Rightarrow \quad \frac { m ^ { 2 } - n ^ { 2 } \cos ^ { 2 } A } { \sin ^ { 2 } A } = 1{/tex}
{tex}\Rightarrow{/tex} m2 - n2cos2A = sin2A
{tex}\Rightarrow{/tex} m2 - n2cos2A = 1 - cos2A
{tex}\Rightarrow{/tex} m2 - 1 = n2cos2A - cos2A
{tex}\Rightarrow{/tex} m2 - 1 = (n2 - 1) cos2A
{tex}\Rightarrow \quad \frac { m ^ { 2 } - 1 } { n ^ { 2 } - 1 } ={/tex} cos2A

  • 5 answers

Aditi Kumari 6 years, 10 months ago

Any odd positive number

Anjali Mahlawat 6 years, 10 months ago

n2=8+1 n2=9 n=3 ?

Honey ??? 6 years, 10 months ago

Ya like 9,19,29

Aditya Singh 6 years, 10 months ago

Their can be infinite values

Honey ??? 6 years, 10 months ago

9
  • 5 answers

Jitendra Yadav 6 years, 10 months ago

Honey was right

Bishnu Prasad Patra Patra 6 years, 10 months ago

Yes a1=3 a2=5 a3=7

Vipul Pyati 6 years, 10 months ago

a19= 3×a6 a+18d=3(a+5d) a+18d= 3a+15d 2a-3d=0 eq 1 Acc to problem a9=19 a+8d=19 eq 2 Now do both eq 1 n 2 by any linear eqation method at last a=3 d=2

Geetanand Yadav 6 years, 10 months ago

Topr honey is right

Honey ??? 6 years, 10 months ago

3,5,7,9
  • 1 answers

Khushboo Giri 6 years, 10 months ago

Let √5 be a rational number say,p/q where q is not equal to zero and p&q are co prime. √5=p/q Squaring both side 5=p²/q² 5q²=p²--------------(1) 5q² is divisible by 5 q²is divisible by 5 q is divisible by 5 Let q=5a Putting the value in (1) 5q²=(5a)² 5q²=25a² q²=5a² 5a² is divisible by 5 q²is divisible by 5 q is divisible by 5 p&q has common factor 5 But we assumed they are co prime. It's a contradiction. Our supposition is wrong. Therefore √5 is irrational.
  • 2 answers

Khushnuda?Khushi ??? 6 years, 10 months ago

Many members uploaded photo of their answers....by the way its not thr on google

Geetanand Yadav 6 years, 10 months ago

See on YouTube or Google
  • 1 answers

Geetanand Yadav 6 years, 10 months ago

See in NCERT page no.145and146
  • 2 answers

Mohit Kumar 6 years, 10 months ago

Terminating As prime factors of denominatao is of the form 2^m×5^n

Geetanand Yadav 6 years, 10 months ago

Terminating.1.15 ans.
  • 2 answers

Drashti Vaish 6 years, 10 months ago

See in this app only

Khushboo Giri 6 years, 10 months ago

Given: a circle c(o,r), <QPB=90° Prove that:QP passes through center O Prove:we know that line joining the center and point of contact on the tangent is perpendicular. Therefore, OP perpendicular to AB. <OPB=90 <QPB=90 <QPB+<OPB=90+90 =180 this two angles are adjacent angles. They are linear pair. Therefore, QP passes through center O.
  • 2 answers

Muskan Malviya 6 years, 10 months ago

Its solution is on page no. 30 of ncert book

Kavita Dabra 6 years, 10 months ago

Zeros are root 3 and - root3
  • 1 answers

Pramod Patil 6 years, 10 months ago

Polynomial is a data base question which has answer in google
  • 1 answers

Sia ? 6 years, 6 months ago

Using distance formula, we obtain
SP = {tex}\sqrt { \left( a t ^ { 2 } - a \right) ^ { 2 } + ( 2 a t - 0 ) ^ { 2 } } = a \sqrt { \left( t ^ { 2 } - 1 \right) ^ { 2 } + 4 t ^ { 2 } }{/tex}= a(t2 + 1)
SQ = {tex}\sqrt { \left( \frac { a } { t ^ { 2 } } - a \right) ^ { 2 } + \left( \frac { 2 a } { t } - 0 \right) ^ { 2 } }{/tex}
SQ = {tex}\sqrt { \frac { a ^ { 2 } \left( 1 - t ^ { 2 } \right) ^ { 2 } } { t ^ { 4 } } + \frac { 4 a ^ { 2 } } { t ^ { 2 } } }{/tex}{tex}\frac { a } { t ^ { 2 } } \sqrt { \left( 1 - t ^ { 2 } \right) ^ { 2 } + 4 t ^ { 2 } } = \frac { a } { t ^ { 2 } } \sqrt { \left( 1 + t ^ { 2 } \right) ^ { 2 } } = \frac { a } { t ^ { 2 } }( 1+ t^2){/tex}
{tex}\therefore \quad \frac { 1 } { S P } + \frac { 1 } { S Q } = \frac { 1 } { a \left( t ^ { 2 } + 1 \right) } + \frac { t ^ { 2 } } { a \left( t ^ { 2 } + 1 \right) }{/tex}
{tex}\Rightarrow \quad \frac { 1 } { S P } + \frac { 1 } { S Q } = \frac { 1 + t ^ { 2 } } { a \left( t ^ { 2 } + 1 \right) } = \frac { 1 } { a }{/tex}, which is independent of t.

  • 1 answers

Ram Kushwah 6 years, 10 months ago

<i>whenever you are required to find a number that is </i><i>divisible</i><i> by more than one number, you have to find LCM.</i>

<i>whenever you are required to find a number that </i><i>completely divides</i><i> more than one number, you have to find HCF.</i>

Coming to illustrative examples :

<i>LCM</i>

<i>Three traffic signals change from Red to Green in 10, 15 & 20 seconds respectively. After how much time will all three signals together become Green ?</i>

The three traffic signals will change from Red to Green as follows ( in seconds ):

First : 10,20,30,40,50,60,70,80 …..

Second : 15,30,45,60,75,90 …

Third : 20,40,60,80 …

It is clear the three signals will flash Green together after 60 seconds. Now , this 60 is completely <i>divisible</i> by 10, 15 & 20 and LCM(10, 15 , 20) is 60, hence the problem was of finding LCM.

<i>HCF</i>

<i>Square towels has to be cut from a piece of cloth measuring 16m x 20m. What is the minimum number of towels that can be cut so that there is no wastage ?</i>

 

The towels are square and length is equal to width. Since there should be no wastage, the edge of the towel should exactly divide the length & breadth of the piece of cloth. The dimension of the towel is that highest number which completely divides 16 & 20. So, here we have a case of HCF.

HCF(16,20) = 4

So, the dimension of towel is 4m x 4m

The minimum number of towels possible is (16 x 20 )/ (4 x 4) = 20.

  • 2 answers

Mohammad Qasim 6 years, 10 months ago

Trigonometry measurements of three side of triangle.

@ Aashu 6 years, 10 months ago

Trigonometry means three side measurement.......
  • 3 answers

Mohammad Qasim 6 years, 10 months ago

Let no. Of students going for picnic be x. Therefore , the cost for food per student=240/x If the 4 students not going for picnic , then the no. Of students will be =x-4 Acc. To questions 240/(x-4)=240/x+(5) Then 240/(x-4) -240/x=5(this is equations ) You can solve equation

Aqsa Irfan 6 years, 10 months ago

Let the no.of students going for the picnic be x. Therefore,the cost for food per student =240/x. 4 students are not going for the trip. Therefore no of students =x-4 Therefore cost per head =240/x-4 Given that the cost per head has increased by 5 rs. Therefore, 240/x-4 - 240/x =5 (Solve quadratic eqn.)

Aditi Kumari 6 years, 10 months ago

Let the student went for picnic be x Cost for food for x student=Rs 240 For 1student =240/x When four student did not went for picnic Then Cost of food for 1 student=240/x-4 A/q 240/(x-4) - 240/x =5 So , x=16

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App