No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 5 answers

Puja Sahoo? 6 years, 10 months ago

Sry, 6 a square b x hona chahiye

Puja Sahoo? 6 years, 10 months ago

Sir, second step me, 6 abx square

Ram Kushwah 6 years, 10 months ago

{tex}\begin{array}{l}2\mathrm a^2\mathrm x^2+\mathrm b(6\mathrm a^2+1)\mathrm x+3\mathrm b^2=0\\2\mathrm a^2\mathrm x^2+6\mathrm a^2\mathrm x+\mathrm{bx}+3\mathrm b^2=0\\2\mathrm a^2\mathrm x(\mathrm x+3\mathrm b)+\mathrm b(\mathrm x+3\mathrm b)=0\\(\mathrm x+3\mathrm b)(2\mathrm a^2\mathrm x+\mathrm b)=0\\\mathrm x=-3\mathrm b,-\frac{\mathrm b}{2\mathrm a^2}\end{array}{/tex}

Kratika Nyati 6 years, 10 months ago

Use quadratic formula easy answer would come out

Puja Sahoo? 6 years, 10 months ago

Yur question is not clear......, write it properly ?
  • 2 answers

Ram Kushwah 6 years, 10 months ago

on x axis y= 0

let the coordinates are O (x,0),A(2,5),B=(-2,9)

{tex}\begin{array}{l}\mathrm{OA}=\mathrm{OB}\\\mathrm{OA}^2=\mathrm{OB}^2\\(\mathrm x-2)^2+(0-5)^2=(\mathrm x+2)^2+(0-9)^2\\\mathrm x^2-4\mathrm x+4+25=\mathrm x^2+4\mathrm x+4+81\\-8\mathrm x=81-25=56\\\mathrm x=-7\\\mathrm{hence}\;\mathrm{the}\;\mathrm{point}\;\mathrm O\;(-7,0)\end{array}{/tex}

Puja Sahoo? 6 years, 10 months ago

Check exercise 7.1 of ncert same aisa question hai ncert me... apko proper solution isi app me mil jayega
  • 3 answers

Dipti Singh 6 years, 10 months ago

1/3

Ram Kushwah 6 years, 10 months ago

b2=4ac

( 2√5 )^2=4*15*p

20=60p

p=1/3

Puja Sahoo? 6 years, 10 months ago

P=3
  • 2 answers

Shivay Brahmåñ 6 years, 10 months ago

Do with -b+-√b^+4ac/2a. 7+-√49+4*56/2 -7+√273/2 and -7-√273/2

Puja Sahoo? 6 years, 10 months ago

Answer root me hai x =(7-√273)/2 and x =(7+√273)/2.......?
  • 2 answers

Gungun ❤❤❤ 6 years, 10 months ago

Fine

Gungun ❤❤❤ 6 years, 10 months ago

Bcz may b it has more than 2 factors....so it cn b considered as composite no.
  • 1 answers

Sneha Singh 6 years, 10 months ago

Let the other roots be = (X-2+√3)(x-2-√3) = { (X-2)² - (√3)²} = { X² + 4 -4x - 3} = {X²-4x +1} Now divide the value of p(x) with the above value . U willl get 2x² - x -1 By factorising it u will get x= 1, 1/2
  • 1 answers

Sia ? 6 years, 6 months ago

Given, 
tan A = n tan B
{tex} \Rightarrow{/tex} tanB = {tex}\frac{1}{n}{/tex}tan A
{tex}\Rightarrow{/tex} cotB = {tex}\frac { n } { \tan A }{/tex}..........(1)
Also given, 
sin A = m sin B
{tex}\Rightarrow{/tex} sin B = {tex}\frac{1}{m}{/tex}sin A
{tex}\Rightarrow{/tex} cosec B = {tex}\frac { m } { \sin A }{/tex}.....(2)
We know that, cosec2B - cot2B = 1, hence from (1) & (2) :-
{tex} \quad \frac { m ^ { 2 } } { \sin ^ { 2 } A } - \frac { n ^ { 2 } } { \tan ^ { 2 } A } = 1{/tex}
{tex}\Rightarrow \quad \frac { m ^ { 2 } } { \sin ^ { 2 } A } - \frac { n ^ { 2 } \cos ^ { 2 } A } { \sin ^ { 2 } A } = 1{/tex}
{tex}\Rightarrow \quad \frac { m ^ { 2 } - n ^ { 2 } \cos ^ { 2 } A } { \sin ^ { 2 } A } = 1{/tex}
{tex}\Rightarrow{/tex} m2 - n2cos2A = sin2A
{tex}\Rightarrow{/tex} m2 - n2cos2A = 1 - cos2A
{tex}\Rightarrow{/tex} m2 - 1 = n2cos2A - cos2A
{tex}\Rightarrow{/tex} m2 - 1 = (n2 - 1) cos2A
{tex}\Rightarrow \quad \frac { m ^ { 2 } - 1 } { n ^ { 2 } - 1 } ={/tex} cos2A

  • 1 answers

Gaurav Seth 6 years, 10 months ago

Secθ+tanθ=p ----------------------(1)
∵, sec²θ-tan²θ=1
or, (secθ+tanθ)(secθ-tanθ)=1
or, secθ-tanθ=1/p ----------------(2)
Adding (1) and (2) we get,
2secθ=p+1/p
or, secθ=(p²+1)/2p
∴, cosθ=1/secθ=2p/(p²+1)
∴, sinθ=√(1-cos²θ)
=√[1-{2p/(p²+1)}²]
=√[1-4p²/(p²+1)²]
=√[{(p²+1)²-4p²}/(p²+1)²]
=√[(p⁴+2p²+1-4p²)/(p²+1)²]
=√(p⁴-2p²+1)/(p²+1)
=√(p²-1)²/(p²+1)
=(p²-1)/(p²+1)
∴, cosecθ=1/sinθ=1/[(p²-1)/(p²+1)]=(p²+1)/(p²-1) 

  • 2 answers

Gaurav Seth 6 years, 10 months ago

Multiply both numerator and denominator of the fraction by the conjugate of the denominator to clear the square root from the denominator.

Khushboo Giri 6 years, 10 months ago

2+√3and2-√3 2+√3+2-√3 (2)²-(√3)² 4-3 1
  • 2 answers

Sharma Satvik 6 years, 10 months ago

Your answer is: an=7-4n Putting n=1, 2, 3,.... We get:- a= 7-4(1)=7-4=3 a2= 7-4(2)=7-8=-1 a3= 7-4(3)= 7-12= -5 Thus AP is formed: 3, - 1, - 5,..... d=a2-a1 d=-1-3=-4 Thus, d=-4.
Shi se question liko smj nhi aa rha
  • 1 answers

Gaurav Seth 6 years, 10 months ago

sec + tan = p

Sec = p - tan

sec^2 = (p - tan)^2

sec^2 = p^2 + tan^2 - 2ptan

sec^2 - tan^2 = p^2 - 2ptan

p^2 - 2ptan - 1 = 0

(p^2 - 1)/2p = tan

Sec + (p^2 - 1)/2p = p

Sec = p - (p^2 - 1)/2p = (p^2 + 1 )/2p

Cos = 2p/(p^2+1)

cos^2 = 4p^2/(p^2+1)^2

sin^2 = 1 - 4p^2/(p^2+1)^2

sin^2 =[ (p^2+1)^2 - 4p^2]/(p^2+1)^2

sin^2 = (p^2–1)^2/(p^2+1)^2

Sin = (p^2–1)/(p^2+1)

  • 3 answers

Farhat Shaikh Shaikh 6 years, 10 months ago

Firstly tell me by textual questions what do you mean..

Vivek R Vive 6 years, 10 months ago

Its serious bro

Ritik Sharma 6 years, 10 months ago

I know the a answer The answer is that you will get your answer on 7 March
  • 1 answers

Misha Yadav 6 years, 10 months ago

It should be cos(a+b)=0 then, cos(a+b)=cos90° =>a+b=90° =>a=90°-b Now sin(a-b) =sin(90-b-b) =sin(90-2b) =cos2b [as sin(90-x)=cosx]
  • 2 answers

Khushboo Giri 6 years, 10 months ago

X. Y. 1. 4 6. 8 11. 12 First equations answer X. Y 3. 0 2. 2 1. 4 Second equations answer Now put the value in graph You will get your ans.

Khushboo Giri 6 years, 10 months ago

4x-5y=-16. [ X. Y. 4x=-16+5y. 1. 4 X=-16+5y÷4. 6. 8 11. 12]---put the value in graph 2x+y=6. [ X. Y. 2x=6-y. 3. 0 x=6-y÷2. 2. 2 1. 4]----put the value in graph
  • 1 answers

Khushboo Giri 6 years, 10 months ago

X-2/x+2+3(x+2)/x-2=4 (X-2)²+3(x+2)(x+2)/(x+2)(x-2)=4 (X-2)²+3(x+2)²/(x+2)(x-2)=4 X²+4-4x+3(x²+4+4x)/x²-4=4 X²+4-4x+3x²+12+12x/x²-4=4 4x²+8x+16/x²-4=4 4x²+8x+16=4x²-16 8x=-16-16 x=-4
  • 1 answers

Sia ? 6 years, 6 months ago

It is given that
f(x) = 3x- 2x2+ 5x - 5
q(x) = (x2 - x + 2)
r(x) = (-7)
According to division algorithm,
f(x) = p(x).q(x) + r(x)
{tex}\Rightarrow{/tex}3x3 - 2x2 + 5x - 5 = p(x).(x2 - x + 2) + (-7)
{tex}\Rightarrow{/tex}3x3 - 2x2 + 5x - 5 + 7 = p(x)(x2 - x + 2)
{tex}\Rightarrow{/tex} p(x) = {tex}\frac { 3 x ^ { 3 } - 2 x ^ { 2 } + 5 x + 2 } { x ^ { 2 } - x + 2 }{/tex}

{tex}\therefore{/tex} p(x) = 3x + 1

  • 1 answers

Shyam Thakur 6 years, 10 months ago

Let the one side of triangle be x.so,yhe diameter of circle is x. Area of triangle=√3÷4(x)^2 Area of circle=π(x÷2)^2 Ratio=(√3 x^2÷4)÷(πx^2÷4) =√3x^2÷πx^2 =√3÷π
/5
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

Mode = 4
Since, it has highest frequency.

  • 1 answers

Sia ? 6 years, 6 months ago


Clearly, {tex}BD=\frac{BC}{2}=\frac{a}{2}{/tex} [In an equilateral triangle , altitude bisects the base]
In {tex}\triangle ABC{/tex}, {tex}\angle ADB=90^o{/tex}
Using pythgoras theorem,
AB2 = AD2 + BD
{tex}\Rightarrow a^2=AD^2+(\frac{a}{2})^2{/tex} 
{tex}\Rightarrow a^2=AD^2+(\frac{a^2}{4}){/tex}
{tex}\Rightarrow a^2 - (\frac{a^2}{4})=AD^2{/tex}
{tex}\Rightarrow (\frac{4a^2 - a^2}{4})=AD^2{/tex} 
{tex}\Rightarrow AD=\frac{\sqrt3 a }{2}{/tex} 
{tex}\therefore \triangle ABC{/tex} and {tex}\triangle ADE{/tex} are equilateral triangles and so equiangular. 
{tex}\therefore \triangle ABC \sim \triangle ADE{/tex} 
{tex}\frac{ar(\triangle ADE)}{ar(\triangle ABC)}=\frac{AD^2}{AB^2}{/tex}
{tex}\frac{ar(\triangle ADE)}{ar(\triangle ABC)}=\frac{\frac{\sqrt{3}a}{2}}{a^2}{/tex}
{tex}\frac{ar(\triangle ADE)}{ar(\triangle ABC)}=\frac{3}{4}{/tex}

  • 1 answers

Areeba Siddiqui 6 years, 10 months ago

ax2 + bx +c=0 x2 +bx/a +c/a=0 x2 +bx/a=-c/a x2+2(b/2a)x+(b/2a)square=-c/a+(b/2a)square (x+b/2a)square=-c/a+(b/2a)square
  • 3 answers

Khushboo Giri 6 years, 10 months ago

Plz give full solution

Alok Raj 6 years, 10 months ago

Integer is 12

Alok Raj 6 years, 10 months ago

12
  • 1 answers

Sneha Singh 6 years, 10 months ago

(1/2)² = 1/4
  • 1 answers

Chetna ☺️ 6 years, 10 months ago

But how
  • 3 answers

Gaurav Seth 6 years, 10 months ago

The velocity gained by the accelerating electrons in uniform electric field inside the conductor is drift velocity. The average velocity, acquired by free electrons along the length of a metallic conductor, due to existing electric field is called drift velocity.


 

Let ‘n’ be the number density of free electrons in a conductor of length ‘l’ and area of cross-section ‘A’.

 

Total charge in the conductor, Q = Ne

                                          = (nAl)e

Time taken, t is given by, 

Therefore, the current flowing across the conductor is given by, 



That is, 

, which is the amount of current flowing through a conductor in terms of drift velocity.

Geetanand Yadav 6 years, 10 months ago

Chapter electricity

Geetanand Yadav 6 years, 10 months ago

Sorry bro/sis it is of science
  • 1 answers

Sia ? 6 years, 6 months ago

Let n be any positive integer. Applying Euclids division lemma with divisor = 5, we get
{tex}\style{font-family:Arial}{\begin{array}{l}n=5q+1,5q+2,5q+3\;and\;5q+4\;\\\end{array}}{/tex}
Now (5q)2 = 25q2 = 5m, where m = 5q2, which is an integer;
{tex}\style{font-family:Arial}{\begin{array}{l}(5q\;+\;1)^{\;2}\;=\;25q^2\;+\;10q\;+\;1\;=\;5(5q^2\;+\;2q)\;+\;1\;=\;5m\;+\;1\\where\;m\;=\;5q^2\;+\;2q,\;which\;is\;an\;integer;\\\;(5q\;+\;2)^2\;=\;25q^2\;+\;20q\;+\;4\;=\;5(5q^2\;+\;4q)\;+\;4\;=\;5m\;+\;4,\\\;where\;m\;=\;5q^2\;+\;4q,\;which\;is\;an\;integer;\\\;(5q\;+\;3)^{\;2}\;=\;25q^2\;+\;30q\;+\;9\;=\;5(5q^2\;+\;6q+\;1)\;+\;4\;=\;5m\;+\;4,\\\;where\;m\;=\;5q^2\;+\;6q\;+\;1,\;which\;is\;an\;integer;\\\;(5q\;+\;4)^2\;=\;25q^2\;+\;40q\;+\;16\;=\;5(5q^2\;+\;8q\;+\;3)\;+\;1\;=\;5m\;+\;1,\;\\where\;m\;=\;5q^2\;+\;8q\;+\;3,\;which\;is\;an\;integer\\\end{array}}{/tex}
Thus, the square of any positive integer is of the form 5m, 5m + 1 or 5m + 4 for some integer m.
It follows that the square of any positive integer cannot be of the form 5m + 2 or 5m + 3 for some integer m.

  • 0 answers
  • 5 answers

Areeba Siddiqui 6 years, 10 months ago

Aap sabhi ko cbse ka new practice paper mila school se

Dia Khurana@1608 6 years, 10 months ago

Please explain

Areeba Siddiqui 6 years, 10 months ago

How plz explain it

Areeba Siddiqui 6 years, 10 months ago

Who

Geetanand Yadav 6 years, 10 months ago

0,1,2

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App