No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Geetanand Yadav 6 years, 10 months ago

By practicing them more and more
  • 0 answers
  • 1 answers

Yogita Ingle 6 years, 10 months ago

We know that a x b = H.c.f (a, b) x L.c.m( a,b)

a = 45 , H.c.f (a, b) = 9 ,L.c.m( a,b) = 360.

b = ( 9 x 360) / 45 = 72.

∴ Another number is 72

  • 1 answers

Sia ? 6 years, 6 months ago

In the figure, D is a point on side BC of {tex}\triangle {/tex} ABC such that.{tex}\frac{{BD}}{{CD}} = \frac{{AB}}{{AC}}{/tex}
To prove, AD is the bisector of
{tex}\angle{/tex} BAC
Construction: From BA produce cut off AE = A. Join CE

Proof:{tex}\frac{{BD}}{{CD}} = \frac{{AB}}{{AC}}{/tex} ........Given
{tex}\Rightarrow {/tex} {tex}\frac{{BD}}{{CD}} = \frac{{AB}}{{AE}}{/tex}  {tex}\because {/tex} AC = AE(by construction)
{tex}\therefore {/tex} In {tex}\triangle {/tex} BCE,
AD {tex}\parallel{/tex} CE ............By converse of the basic proportional theorem
{tex}\therefore {/tex} {tex}\angle{/tex}BAD = {tex}\angle{/tex}AEC .......(1)...........Corres. {tex}\angle{/tex} s
{tex}\angle{/tex}CAD = {tex}\angle{/tex}AEC  ..........(2) ........Alt,Int. {tex}\angle{/tex} s
{tex}\therefore {/tex} AC = AE .........By construction
{tex}\therefore {/tex} {tex}\angle{/tex}AEC = {tex}\angle{/tex}ACE  ............(3)...angles opposite equal sides of a triangle are equal
Using (3),(1) and (2) gives {tex}\angle{/tex}BAD = {tex}\angle{/tex}CAD

  • 3 answers

Chetna ☺️ 6 years, 10 months ago

You can take humanities it will help u

Sneha Singh 6 years, 10 months ago

Aap sbhi ne news dekha 14th feb ka

Honey ??? 6 years, 10 months ago

Join army school
  • 1 answers

Sia ? 6 years, 6 months ago

According to the question, 
{tex}\frac { 2 } { 3 } \operatorname { cosec } ^ { 2 } 58 ^ { \circ } - \frac { 2 } { 3 } \cot 58 ^ { \circ } \tan 32 ^ { \circ } - \frac { 5 } { 3 }{/tex}{tex} tan13° tan37° tan45° tan53° tan77°{/tex}
{tex}\frac { 2 } { 3 } \operatorname { cosec } ^ { 2 } 58 ^ { \circ } - \frac { 2 } { 3 } \cot 58 ^ { \circ } \tan \left( 90 ^ { \circ } - 58 ^ { \circ } \right) - \frac { 5 } { 3 }{/tex}tan 13° tan 37° tan 45°tan (90° - 37°) tan (90° -13°)
{tex}\frac { 2 } { 3 } \operatorname { cosec } ^ { 2 } 58^\circ - \frac { 2 } { 3 } \cot ^ { 2 } 58^\circ - \frac { 5 } { 3 }{/tex}{tex}tan 13° tan37° tan 45° cot 37° cot 13°{/tex}
{tex}\frac { 2 } { 3 } \left( \operatorname { cosec } ^ { 2 } 58 ^ { \circ } - \cot ^ { 2 } 58 ^ { \circ } \right) - \frac { 5 } { 3 } \tan 13 ^ { \circ } \tan 37 ^ { \circ } \times 1 \times \frac { 1 } { \tan 37 ^ { \circ } } \times \frac { 1 } { \tan 13 ^ { \circ } }{/tex}
{tex}\frac { 2 } { 3 } \times 1 - \frac { 5 } { 3 } = \frac { 2 } { 3 } - \frac { 5 } { 3 } = -1{/tex}

  • 2 answers

Gaurav Seth 6 years, 10 months ago

Let numbers be x at ones place and y at tens place so 
10y+x is that digit 
now reversed digit is 10x+y
according to question 
7 (10y+x)=4(10x+y)
x=2y (i)
now 
given 
x-y=3
from eq. i 2y=x
2y-y=3
y=3
so
x=63 
required original no. is 36 and reversed digit is 63

Honey ??? 6 years, 10 months ago

36
  • 2 answers

Gaurav Seth 6 years, 10 months ago

Let father = x, son = y

x = 3y + 3

x + 3 = 2(y + 3) + 10
3y + 3 + 3 = 2y + 6 + 10
3y + 6 = 2y + 16
3y - 2y = 16 - 6
y = 10

x = 3y + 3
x = 3 × 10 + 3
x = 30 + 3
x = 33

The present age of the father is 33 years old

Mukul Empire 6 years, 10 months ago

The age of father is 33years old
  • 2 answers

Akshat Jain 6 years, 10 months ago

In X axis : (3,-5) In Y axis : (-3,5)

Ram Kushwah 6 years, 10 months ago

(3,0) and (0,5)

  • 1 answers

Mukul Empire 6 years, 10 months ago

If nth term of an AP is 2n+1 Then, first term of an AP =2(1)+1... =2+1. .. =3 Then, Second term = 2(2)+1 =5 Third term = 2(3)+1=7 Sun of three term= 3+5+7=15 Answer is _15_
  • 3 answers

Maniti Gupta 6 years, 10 months ago

nth term = 2n+1 1st term = 3 2nd term = 5 3rd term = 7 Sum = 3+5+7= 15

Dia Khurana@1608 6 years, 10 months ago

You can solve this as an = 2n + 1 Now a1 = 2 (1) + 1 =3 a1 = 3 , Similarly a2 = 2(2) + 1 = 5 a3 = 7 Now sum of first three terms Put the formula And this would be ur answer = 15 I think this is the perfect answer Hope u understand?

Abdul Vahid 6 years, 10 months ago

15
  • 1 answers

Sia ? 6 years, 6 months ago

According to question, a=2 and {tex}\mathrm { S } _ { 5 } = \frac { 1 } { 4 } \left[ \mathrm { S } _ { 10 } - \mathrm { S } _ { 5 } \right]{/tex}

{tex}\Rightarrow{/tex} 4S5 = S10 - S5

{tex}\Rightarrow{/tex} 5S5 = S10

{tex}\Rightarrow \sqrt [ 5 ] { \frac { 5 } { 2 } \{ 2 \times 2 + ( 5 - 1 ) d \} } ] = \frac { 10 } { 2 } [ 2 \times 2 + ( 10 - 1 ) d ]{/tex} since {tex}{S_n} = {n \over 2}\left[ {2a + (n - 1)d} \right]{/tex}

{tex}\Rightarrow \frac { 25 } { 2 } [ 4 + 4 d ] = 5 [ 4 + 9 d ]{/tex}

{tex}\Rightarrow{/tex} 25[4 + 4d] = 10[4 + 9d] 

{tex}\Rightarrow{/tex} 100 + 100d = 40 + 90d

{tex}\Rightarrow{/tex} 10d = -60

{tex}\Rightarrow{/tex} d = -6

Now, an = a + (n - 1)d 

{tex}\Rightarrow a _ { 20 } = 2 + ( 20 - 1 ) \times ( - 6 ){/tex}

{tex}\Rightarrow{/tex} a20 = 2 - 114 = -112

  • 1 answers

Vaibhav Yadav 6 years, 10 months ago

0,1 and 2..... Since b=3 0<=r<3
  • 1 answers

Sia ? 6 years, 6 months ago

Here, prime factorization of N = 2³×54 ×81×7

 =23×54× 81 x 7 

=23×54×81 x 7

= (10)3×5 x 81 x 7

So, number of consecutive zeroes in 23×53 that is in (10)3  is equal to 3

  • 1 answers

Geetanand Yadav 6 years, 10 months ago

Yes it is a quadratic equation
  • 1 answers

Nishant Saini 6 years, 10 months ago

We can't send images of question in this app.
  • 0 answers
  • 3 answers

Farhat Shaikh Shaikh 6 years, 10 months ago

Composit number because composit x composit = composit . Also primr x composit = composit

Abhinav Kumar 6 years, 10 months ago

7×11×13+7=7(1×11×13+1) 7(243+1) 7×244 7×2×2×61 It has more than two factor so it is a composite number

Rakesh Vyas 6 years, 10 months ago

7×11×13+7=7(11×13+1)=7×144 Therefore the given number is product of 7 and 144 . So it's a composite number.
  • 1 answers

Anureet Kaur 6 years, 10 months ago

9n = (3×3)n . 3 can never ends with zero. So, 3 is the digit at unit place of 9n.??. I am not sure about my answer
  • 1 answers

Affu 😊 6 years, 10 months ago

Ram kushwah plz tell me that how do you sent the images?
  • 2 answers

Affu 😊 6 years, 10 months ago

How????

Ram Kushwah 6 years, 10 months ago

thsi question you ask mycbseguide at 092135 22769

  • 1 answers

Khushboo Giri 6 years, 10 months ago

X=3alpha+2÷alpha+1 Y=7alpha-2÷alpha+1 Now, 2x+(y-4)=0 Putting the value of x&y in this equation. 2×(3alpha+2÷alpha+1)+(7alpha -2÷alpha+1) -4=0 6alpha+4+7alpha-2÷alpha+1=4 13alpha+2÷alpha+1=4 13alpha+2=4alpha+4 13alpha-4alpha=4-2 9alpha=2 alpha=2/9 Therefore, the ratio is 2:9
  • 3 answers

Honey ??? 6 years, 10 months ago

Cube root of 1331 is 11 and sum of digits is 2

Ram Kushwah 6 years, 10 months ago

pl write question correctly

Ajay Gaur 6 years, 10 months ago

sorry 2 digit no. h ok
  • 3 answers

Ram Kushwah 6 years, 10 months ago

{tex}\begin{array}{l}\text{240 m/s=}\frac{\displaystyle240/1000\;(\mathrm m\;\mathrm{to}\;\mathrm{km})}{1/3600\;(\mathrm s\;\mathrm{to}\;\mathrm{hr})}\\=\frac{\displaystyle240}{1000}\times\frac{3600}1\\=24\times36=860\;\mathrm{km}/\mathrm{hr}\end{array}{/tex}

 

Khushboo Giri 6 years, 10 months ago

240×60×60÷1000 km per hour

Bishal Das 6 years, 10 months ago

Multiply by 18/5

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App