No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Devanshu Kumawat 6 years, 9 months ago

Firstly , let assume that root 2 is rational then, Root 2=p/q , now square both side Root 2square=p square/q square 2=p square/q square =Q square =p square (This is first equation.) Now, p is divisible by (2) Let p =2k. (Here we use any word like i use k i also use x,y,z ). (This is second equation,). From (1 )&(2) Q square=(2k) square/2 Q sq=4k square ( only this square is put on the k value ) Q sq /2=k sq P/q is rational The common factor of p&q should be 1 Let we proved the common factor of p&q is( 2 ) this contradction occur due to our wrong assumption so, Root 2 is irrational , thanks for ask this question
  • 2 answers

Kumari Rani 6 years, 9 months ago

Ans. I also knows but ? Is steps of this solution

Puja Sahoo 6 years, 9 months ago

15
  • 4 answers

Samyukta ... 6 years, 9 months ago

Ismai aap infinite solutions wali condition laga dena a1/a2=b1/b2=c1/c2....then in dono equations se ye values is condition mai rakh dena...a1= p-3, b1=3, c1= p, a2= p, b2= p, c2= 12....then jab ye values isi condition mai rakhoge na toh ye milega (p-3)/p = 3/p = p/12 and then...inn mai se koi bhi do le lena...jaise aapne liya b1/b2=c1/c2 jo hai 3/p = p/12 then cros multiply kr dena u will get p^2= 36 then p= √30 therefore p=6....

Divya Garg ? 6 years, 9 months ago

They have infinite solutions...therefore a1/a2= b1/b2.........so (p-3)/p=3/p.......p-3=3......so we get p=6

Aayushi Attri 6 years, 9 months ago

Plzz solve it

Divya Garg ? 6 years, 9 months ago

6
  • 2 answers

Aayushi Attri 6 years, 9 months ago

Bhai answer pucha h suggestion nhi

Sunilsolanky Solanky 6 years, 9 months ago

R.d sharma uthao
  • 1 answers

Sia ? 6 years, 4 months ago

(1 + cotA + tanA) (sinA - cosA)
= sinA - cosA + cotA sinA - cotA cosA + sinA tanA - tanA cosA
{tex}= \sin A - \cos A + \frac{{\cos A}}{{\sin A}} \times \sin A - \cot A\cos A + \sin A\;\tan A - \frac{{\sin A}}{{\cos A}} \times \cos A{/tex}
= sinA - cosA + cosA - cotA cosA + sinA tanA - sinA
=  sinA tanA - cotA cosA........(1)
Now taking ;
{tex}\quad \frac{{\sec A}}{{\cos e{c^2}A}} - \frac{{\cos ecA}}{{{{\sec }^2}A}}{/tex}
{tex} = \frac{{\frac{1}{{\cos A}}}}{{\frac{1}{{{{\sin }^2}A}}}} - \frac{{\frac{1}{{\sin A}}}}{{\frac{1}{{{{\cos }^2}A}}}}{/tex}
{tex} = \frac{{{{\sin }^2}A}}{{\cos A}} - \frac{{{{\cos }^2}A}}{{\sin A}}{/tex}
{tex} = \sin A \times \frac{{\sin A}}{{\cos A}} - \cos A \times \frac{{\cos A}}{{\sin A}}{/tex}
{tex} = \sin A \times \tan A - \cos A \times \cot A{/tex}.......(2)
From (1) & (2),
(1 + cotA + tanA) (sinA - cosA) = {tex}\frac { \sec A } { cosec ^ { 2 } A } - \frac { cosec A } { \sec ^ { 2 } A }{/tex} = sinA.tanA - cosA.cotA 

  • 3 answers

Puja Sahoo 6 years, 9 months ago

Ooooo, cool

Swaraj Last 6 years, 9 months ago

Thnx

Harsimran Singh? 6 years, 9 months ago

Congrats..
  • 4 answers

Ishit__ __? 6 years, 9 months ago

-59

Anushka Tiwari 6 years, 9 months ago

The answer is 59

Anushka Tiwari 6 years, 9 months ago

59 and the quotient after division will be x^2-6x+15 So you can also check this by multiplying the X+4 by the given quotient. Hope this helps you ?

Divya Garg 6 years, 9 months ago

-59
  • 1 answers

Anushka Tiwari 6 years, 9 months ago

Same as root 2 and root 3
  • 2 answers

Arushii A 6 years, 9 months ago

Two no.s x and y Where x+y=27and xy=182 X=27-y (27-y)y=182 y2 -27y+182=0

Sachin Karn 6 years, 9 months ago

12 and 13
  • 3 answers

Diksha Kharwal 6 years, 9 months ago

-77

Kamakshi ... 6 years, 9 months ago

-77

Archana☺ Singh 6 years, 9 months ago

-77
  • 0 answers
  • 1 answers

Archana☺ Singh 6 years, 9 months ago

It is not possible
  • 1 answers

Archana☺ Singh 6 years, 9 months ago

Complete ur que.
  • 1 answers

Ram Kushwah 6 years, 9 months ago

{tex}\begin{array}{l}\sin(45+\mathrm\theta)-\cos(45-\mathrm\theta)\\=\sin(45+\mathrm\theta)-\cos\lbrack90-(45+\mathrm\theta)\rbrack\\=\sin(45+\mathrm\theta)-\sin(45+\mathrm\theta)\\=0\end{array}{/tex}

  • 4 answers

Ishit__ __? 6 years, 9 months ago

We will take 25 as the radius and 115 degree angle as theta in theta/360×πr² and thus we will get the area?

Kiara D'Cruz 6 years, 9 months ago

627.2 cm2 (approx.)

Sneha Singh?????? 6 years, 9 months ago

Can you please explain it????

Archana☺ Singh 6 years, 9 months ago

158125/126 cm2
  • 4 answers

Jiya Arora????? 6 years, 9 months ago

Median class is take of the class which has highest frequency in the table like in question 1 of exercise 14.3 median class is 125 to 145 as its frequency is 20 which highest amount them

Dikshita? Bunkar 6 years, 9 months ago

Median class

Affu 😊 6 years, 9 months ago

Below 140 , 140-145 , 145-150, 150-155 , 155-160 , 160-165

Sahil Singh 6 years, 9 months ago

Hmm
  • 2 answers

Ishita Garg 6 years, 9 months ago

5th term is 20. a+4d = 20.---- (1) 7th term + 11th term is 64 a+6d +a + 10d = 64. 2a + 16d = 64. a+8d = 32.-----(2) solving equations 1 and 2. 4d = 12. d= 3..

Affu 😊 6 years, 9 months ago

a5= 20 , a+4d =20 -----(i) , a7+a11=64 , a+6d+a+10d=64 , 2a+16d=64 , a+8d=32 ------(ii) , solving eqn (i) and (ii) the value of d= 3
  • 2 answers

Archana☺ Singh 6 years, 9 months ago

Prove by equalling adjacent sides of a parallelogram

Ishita Garg 6 years, 9 months ago

Given ABCD is a ||gm such that its sides touch a circle with centre O. ∴ AB = CD and AB || CD, AD = BC and AD || BC Now, P, Q, R and S are the touching point of both the circle and the ||gm We know that, tangents to a circle from an exterior point are equal in length. ∴ AP = AS [Tangents from point A] ... (1) BP = BQ [Tangents from point B] ... (2) CR = CQ [Tangents from point C] ... (3) DR = DS [Tangents from point D] ... (4) On adding (1), (2), (3) and (4), we get AP + BP + CR + DR = AS + BQ + CQ + DS ⇒ (AP + BP) + (CR + DR) = (AS + DS) + (BQ + CQ) ⇒ AB + CD = AD + BC ⇒ AB + AB = BC + BC [∵ ABCD is a ||gm . ∴ AB = CD and AD = BC] ⇒ 2AB = 2BC ⇒ AB = BC Therefore, AB = BC implies AB = BC = CD = AD Hence, ABCD is a rhombus
  • 5 answers

Vinod Saini 6 years, 9 months ago

I know this answer but I think your mind

Affu 😊 6 years, 9 months ago

3

Babita Garg 6 years, 9 months ago

HCF of 9 and 12 is 3

#Rose? (I Love You Kannu? ) 6 years, 9 months ago

3

Tushar Rana 6 years, 9 months ago

3
  • 1 answers

#Rose? (I Love You Kannu? ) 6 years, 9 months ago

How can I proof here
  • 1 answers

Sia ? 6 years, 4 months ago

Given, Radius = r
{tex} \triangle{/tex}AOB is a right triangle.
In the right {tex} \triangle{/tex}OAB,
{tex} \tan \theta = \frac { \mathrm { AB } } { \mathrm { OA } }{/tex}
{tex} \Rightarrow A B = O A \times \tan \theta{/tex}
{tex} = r \tan \theta{/tex}
Now, area of {tex} \triangle{/tex}OAB ={tex}\frac12 b \times h{/tex}={tex} \frac { 1 } { 2 } \mathrm { OA } \times \mathrm { AB }{/tex}
{tex} = \frac { 1 } { 2 } \times r \times r \tan \theta{/tex}
{tex} = \frac { 1 } { 2 } r ^ { 2 } \tan \theta{/tex}
and area of sector OAC ={tex} \pi r ^ { 2 } \times \frac { \theta } { 360 ^ { \circ } }{/tex}

 length of arc AC = {tex} 2 \pi r \times \frac { \theta } { 360 ^ { \circ } }{/tex}
{tex} = \frac { 2 \pi r \theta } { 360 ^ { \circ } } = \frac { \pi r \theta } { 180 ^ { \circ } }{/tex}
{tex} \therefore{/tex}Perimeter of the shaded region
= Arc AC + AB + BC
{tex} = \frac { \pi r\theta } { 180 } + r \tan \theta + ( \mathrm { OB } - \mathrm { OC } ){/tex}
{tex} = \frac { \pi r\theta } { 180 } + r \tan \theta + ( r \sec \theta - r ){/tex}
{tex} = r \left( \frac { \pi \theta } { 180 } + \tan \theta + \sec \theta - 1 \right){/tex}
{tex} = r \left( \tan \theta + \sec \theta + \frac { \pi \theta } { 180 } - 1 \right){/tex}

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App