No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Rdm 😈 1 year, 10 months ago

PA & RA be x ( these are equal as tangent drawn from a outside point of circle to a circle are equal) Similarly AS & AQ be y x + y = x + y PQ = RS Hence proved
  • 1 answers

Aman Sharma 1 year, 10 months ago

7/2(2a+6D)=49 , 17/2(2a+16D)=289 7a+42D=49 , 17a+272D=289 a+6D=7-(1) , a+16D=17 =)a+6D=7 =)a+16D=17 -10D=-10 D=1 a=7-6(1) a=7-6 a=1 A.P.:-1,2,3,4....
  • 2 answers

Rdm 😈 1 year, 10 months ago

p= 3

Devendra Sahu 1 year, 10 months ago

b^2-4ac=0 (-2√5p)^2-4*p*15=0 20p^2-60p=0 20p(p-3)=0 20p=0. p-3=0 p=0. p=3 p=0 is rejected as it will not remain a quadratic equation Therefore p=3
Solve case study Use the Cornell note taking method to make notes of the following passage Everyone needs a holiday, both to relax and to have a change of environment. The holidaymakers feel relaxed and refreshed at the end of the holiday and look forward to the resumption of their duties, be it at school, office, or factories, with renewed vigour. This is the reason why all establishments grant their employees annual leave. With the end of the academic year, the schools and universities grant their pupils a long holiday during mid-summer. This lasts until early September when the new school term starts. Of course, the parents will like to take advantage of this and take their leave to coincide with the children’s vacations. This has become a traditional holiday season in most European countries, particularly in England. With the coming of August, the traditional holiday season in Britain reaches its peak point and most of the holiday resorts are packed to capacity. In order to avoid the crowd, some prefer to take their holiday a little earlier if facilities so warrant. Those who have already taken their holidays can console themselves not only with reflections on the happy days spent in the country, at the seaside or abroad but also with the thought that holiday expenses are over for the year and that by taking an earlier holiday they have missed the August rush.
  • 1 answers

Pramodh R 1 year, 10 months ago

Hi
  • 2 answers

Kaver Mokashi 1 year, 10 months ago

Pythogaros theorem

Aditya Kediya 1 year, 11 months ago

Also known as Pythagoras theorem H²=P²+ B²
  • 0 answers
  • 5 answers

Ankit Rai 1 year, 10 months ago

No solution

Saud Ansari 1 year, 10 months ago

No solution

Yash Kumar 1 year, 11 months ago

Solve question

Yash Kumar 1 year, 11 months ago

Answer

Swastik Sharma 1 year, 11 months ago

Parallel line. 🙂
  • 3 answers

Rashi Choure 1 year, 11 months ago

Pushpak If you know the answer then tell, no need to talk unnecessary..!!

Pushpak Singh 1 year, 11 months ago

Khud se bhi kuch karliya karo

Gayatri Sabara 1 year, 11 months ago

Put distance formula n find urself..
  • 4 answers

Ankit Class 1 year, 11 months ago

20-20=25-25 4(5-5)= 5(5-5) 4=5 2+2=5 But we can't do like this because if it then we can write 0= 0 3×0=4×0 By cancle zero from both side we get 3 =4 . But it is not possible

Ankit Class 1 year, 11 months ago

Simply it can't be proved if we do so the it will break law of mathmatics

Niharika Bhardwaj 1 year, 11 months ago

Sir how to write the outcomes of geting an ace from 52 card I know the answer but i don't know that to write it in sample space

Agampreet Singh 1 year, 11 months ago

4-4+4-4=5 2+2=5 Hence Proved.
  • 3 answers

Ankit Rai 1 year, 10 months ago

(0,7)

Shresth Yadav 1 year, 11 months ago

√625

Sachin Singh 1 year, 11 months ago

(0,7) are the points..🙂
  • 2 answers

Ankit Rai 1 year, 10 months ago

0=0

Nitesh Yadav 1 year, 11 months ago

Ya deleted hai syllabus sa
  • 1 answers

B 01 Rojalin Behera 1 year, 11 months ago

1+cot2 theta =cosec2 theta 1=cosec2 theta - cot2 theta 1=(cosec theta - cot theta)(cosec theta+cot theta) 1=2/3(cosec theta+ cot theta) 3/2=cosec theta+ cot theta ....(1) 2/3=cosec theta - cot theta....(2) Add equation (1) and (2) (Cosec theta+ cot theta)+(cosec theta - cot theta)=(3/2)+(2/3) 2cosec theta=13/6 . . .cosec theta=13/12
  • 2 answers

Preeti Dabral 1 year, 11 months ago

 According to the question,
Radius of the cones= r
Height of the upper cone= h
Height of the lower cone= H
Volume of the upper cone {tex}= \frac { 1 } { 3 } \pi r ^ { 2 } h{/tex} 
Volume of the lower cone {tex}= \frac { 1 } { 3 } \pi r ^ { 2 } H{/tex} 
Total volume of both the cones {tex}= \frac { 1 } { 3 } \pi r ^ { 2 } h + \frac { 1 } { 3 } \pi r ^ { 2 } H{/tex} 
{tex}= \frac { 1 } { 3 } \pi r ^ { 2 } ( h + H ){/tex} 
The quantity of water displaced by the cones = The total volume of both the cones
therefore,
The quantity of water displaced will be {tex}\frac { 1 } { 3 } \pi r ^ { 2 } ( h + H ) \text { units } ^ { 3 }{/tex}

Shanu Yadav 1 year, 11 months ago

Thanks
  • 1 answers

Shanu Yadav 1 year, 11 months ago

Where are the options
  • 1 answers

Sumit Sharma 1 year, 11 months ago

Sumit Sharma
  • 2 answers

Rdm 😈 1 year, 10 months ago

Then don't dare to go in board exams... 😎

Vivek Prajapati 1 year, 11 months ago

I don't touch easy question
  • 3 answers

X A 44 Spandan Kumar 5223 1 year, 11 months ago

its (308/3)cm^2. the formula is (πr^2θ)/360 '^' means after this symbol the number will be an exponent of the letter or number before'^' this symbol

Touheed Khan 1 year, 11 months ago

102.666666667

Rdm 😈 1 year, 11 months ago

308/3- 49√3
  • 1 answers

Preeti Dabral 1 year, 11 months ago

{tex}Here, we have \begin{aligned} & \Rightarrow(x-3)(x-4)=34 / 33^2 \\ & \Rightarrow x^2-7 x+12-34 / 33^2=0 \\ & \Rightarrow x^2-7 x+13034 / 33^2=0 \\ & \Rightarrow x^2-7 x+98 / 33 \times 133 / 33=0 \\ & \Rightarrow x^2-231 / 33 x+98 / 33 \times 133 / 33=0 \end{aligned} {/tex}
{tex}By using factorization method, we get \begin{aligned} & \Rightarrow x^2-(98 / 33+133 / 33) x+98 / 33 \times 133 / 33=0 \\ & \Rightarrow x^2-98 / 33 x-133 / 33 x+98 / 33 \times 133 / 33=0 \\ & \Rightarrow\left(x^2-98 / 33 x\right)-(133 / 33 x-98 / 33 \times 133 / 33)=0 \\ & \Rightarrow x(x-98 / 33)-133 / 33(x-98 / 33)=0 \\ & \Rightarrow(x-98 / 33)(x-133 / 33)=0 \\ & \Rightarrow x-98 / 33=0 \text { or } x-133 / 33= \\ & \Rightarrow x=98 / 33,133 / 33 \\ & \text { Hence, } x=x=98 / 33,133 / 33 \end{aligned} {/tex}

  • 5 answers

G Vishal 1 year, 11 months ago

12

Shlok Gupta 1 year, 11 months ago

Yes 12

Suryansh Pandey 1 year, 11 months ago

12

Rdm 😈 1 year, 11 months ago

12

Shagun Saini 1 year, 11 months ago

12
  • 4 answers

Shresth Yadav 1 year, 11 months ago

Parallel No solution

Kashish Yadav 1 year, 11 months ago

It is wrong answer No solution

Kashish Yadav 1 year, 11 months ago

3x-5y=7 3x = 7+5y x=7+5y 6(7+5y)- 1Oy = 3 42 + 30y - 1Oy =3 20y=3-42 20y=39 y=39/20 3x-5 (39/20) = 7 3x-5 (39/4)=7 12x-195=7 12x=7+195 12x = 202 X=202/12 X= 101/6

Emil Leo 1 year, 11 months ago

Don't know
  • 2 answers

Pari Padhayi 1 year, 11 months ago

23 and 1

Emil Leo 1 year, 11 months ago

Don't know
  • 4 answers

Rdm 😈 1 year, 10 months ago

Y 5

Vivek Prajapati 1 year, 11 months ago

y=5

Rdm 😈 1 year, 11 months ago

Y = 0 ??

Dilsad Alam 1 year, 11 months ago

It is given that (3y − 1), (3y + 5) and (5y + 1) are three consecutive terms of an AP.
  • 3 answers

Preeti Dabral 1 year, 11 months ago

{tex}\text { Let } \alpha \text { and } \beta \text { are the zeroes of the polynomial } f(x)=a x^2+b x+c \text {. }{/tex}

{tex}\therefore \quad(\alpha+\beta)=\frac{-\mathbf{b}}{\mathbf{a}} and \alpha \beta=\frac{\mathbf{c}}{\mathbf{a}} According to the question, \frac{1}{\alpha} and \frac{1}{\beta} are the zeroes of the required quadratic polynomial{/tex}

Sum of zeroes of required polynomial

{tex} \begin{aligned} \mathbf{S}^{\prime} & =\frac{1}{\alpha}+\frac{1}{\beta} \\ & =\frac{\alpha+\beta}{\alpha \beta} \\ & =\frac{-\mathbf{b}}{\mathbf{c}} \end{aligned} [From equation (i) and (ii)] and product of zeroes of required polynomial =\frac{1}{\alpha} \times \frac{1}{\beta}. P^{\prime}=\frac{1}{\alpha \beta} =\frac{a}{c} [From equation (ii)]{/tex}

Equation of the required polynomial.

{tex} =\mathbf{k}\left(\mathbf{x}^2-\mathbf{S}^{\prime} \mathbf{x}+\mathbf{p}^{\prime}\right) where $k$ is any non-zero constant =k\left(x^2-\left(\frac{-b}{c}\right) x+\frac{a}{c}\right) [From equation (iii) and (iv)] =k\left(x^2+\frac{b}{c} x+\frac{a}{c}\right) {/tex}

 

Rdm 😈 1 year, 10 months ago

cx^2 - bx + a

Ankit Class 1 year, 11 months ago

Cx^2+bx+a
  • 2 answers

Preeti Dabral 1 year, 11 months ago

The given equations are
{tex}71x + 37y = 253{/tex}.........(i)
{tex}37x + 71y = 287{/tex}.........(ii)
Adding (i) and (ii),we get
{tex}108x + 108y = 540{/tex}
{tex}108(x + y) = 540{/tex}
{tex}\therefore x + y = \frac { 540 } { 108 } = 5{/tex}......(iii)
Subtracting (ii) from (i),
{tex}34x - 34y = 253 - 287 = -34{/tex}
{tex}34(x - y) = -34{/tex}
{tex}\therefore x - y = - \frac { 34 } { 34 } = - 1{/tex}....(iv)
Adding (iii) and (iv)
2x = 5 - 1 = 4
{tex}\Rightarrow x = 2{/tex}
Subtracting (iv) from (iii)
2y = 5 + 1 = 6
{tex}\Rightarrow y = 3{/tex}
{tex}\therefore{/tex} Solution is x = 2, y = 3

Shlok Gupta 1 year, 11 months ago

Yes x=2, y=3

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App