No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Pranav Bhutada 6 years, 10 months ago

Let there be any other point on tangent that would be perpendicular...but its distance from center is greater than that of point of contact. This will be the case with any other point. Thus distance between center and point of contact of tangent is shortest. Hence it is perpendicular.

Ship.. ??? 6 years, 10 months ago

Theorem 10.1 pg.208
  • 1 answers

Yukti Arora 6 years, 10 months ago

Answer is 16
  • 1 answers

Gaurav Seth 6 years, 10 months ago

Steps of construction:

 

  1. Draw circle with centre O and radius OA = 5 cm, .
  2. Mark another point B on the circle such that ∠AOB = 120°, supplementary to the angle between the tangents. Since the angle between the tangents to be constructed is 60°.

          ∴ ∠AOB = 180° – 60° = 120°.  

      3.Construct angles of 90° at A and B and extend the lines so as to intersect at point P.

      4. Thus, AP and BP are the required tangents to the circle.

 

  • 1 answers

Yashasvi Gautam 6 years, 10 months ago

Easy hai
  • 1 answers

Gaurav Seth 6 years, 10 months ago

Pythagoras Theorem

Statement: In a right angled triangle, the square of the hypotenuse is equal to the sum of squares of the other two sides.

 

Given: A right triangle ABC right angled at B.

To prove: AC2 = AB2 + BC2

Construction: Draw BDAC

Proof :

We know that: If a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse, then triangles on both sides of the perpendicular are similar to the whole triangle and to each other.

ADBABC

So,(Sides are proportional)

Or, AD.AC = AB... (1)

Also,BDCABC

So,

Or, CD. AC = BC... (2)

Adding (1) and (2),

AD. AC + CD. AC = AB2 + BC2

AC (AD + CD) = AB2 + BC2

AC.AC = AB2 + BC2

AC2 = AB2 + BC2

Hence Proved.

  • 0 answers
  • 4 answers

Gaurav Seth 6 years, 10 months ago

We know that, the lengths of tangents drawn from an external point to a circle are equal.

∴ TP = TQ

In ΔTPQ,

TP = TQ

⇒ ∠TQP = ∠TPQ ...(1) (In a triangle, equal sides have equal angles opposite to them)

∠TQP + ∠TPQ + ∠PTQ = 180º (Angle sum property)

∴ 2 ∠TPQ + ∠PTQ = 180º (Using(1))

⇒ ∠PTQ = 180º – 2 ∠TPQ ...(1)

We know that, a tangent to a circle is perpendicular to the radius through the point of contact.

OP ⊥ PT,

∴ ∠OPT = 90º

⇒ ∠OPQ + ∠TPQ = 90º

⇒ ∠OPQ = 90º – ∠TPQ

⇒ 2∠OPQ = 2(90º – ∠TPQ) = 180º – 2 ∠TPQ ...(2)

From (1) and (2), we get

∠PTQ = 2∠OPQ

Vikram Singh 6 years, 10 months ago

XD sorry for the wrong answer...

Parneet Kaur 6 years, 10 months ago

Tangents-pq and pr from p Proof-join oq and or Oq=or(radii) Angle oqr=ANGLE orq(angles Opp to equal sides) So,angle pqr =90°-Angle oqr Ang prq=90°- orq=90°-oqr So,pqr+prq=90°-oqr+90°-oqr Pqr+prq=180°-2 angle oqr 180°- qpr=180 ° - 2angle oqr(a.s.p of triangle) Angle qpr=2angle oqr

Vikram Singh 6 years, 10 months ago

Check question again its insufficient to prove..angle is missing
  • 2 answers

Google User 6 years, 10 months ago

Cos theta

Shivay Rajput 6 years, 10 months ago

Cos squre theta
  • 1 answers

Yashasvi Gautam 6 years, 10 months ago

Ans will be positive -5 * (-5)= 25
  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago

Given: Let, ABCD is a rhombus and since diagonals of a rhombus bisect each other at {tex} 90 ^ { \circ }{/tex}

To Prove: {tex} \therefore A B ^ { 2 } + B C ^ { 2 } + C D ^ { 2 } + A D ^ { 2 } = A C ^ { 2 } + B D ^ { 2 }{/tex}
Proof : 
{tex}\therefore {/tex}{tex}A O = O C {/tex} 
{tex}\Rightarrow A O ^ { 2 } = O C ^ { 2 }{/tex}
{tex}B O = O D {/tex} 
{tex}\Rightarrow B O ^ { 2 } = O D ^ { 2 }{/tex}
and {tex}\angle A O B = 90 ^ { \circ }{/tex} 
{tex}\therefore {/tex} {tex} A B ^ { 2 } = O A ^ { 2 } + B O ^ { 2 }{/tex}
Similarly, {tex} A D ^ { 2 } = x ^ { 2 } + y ^ { 2 } {/tex}
{tex}BC ^ { 2 } = x ^ { 2 } + y ^ { 2 } {/tex}
{tex}C D ^ { 2 } = x ^ { 2 } + y ^ { 2 } {/tex}  
{tex} \therefore A B ^ { 2 } + B C ^ { 2 } + C D ^ { 2 } + D A ^ { 2 } = 4 A O ^ { 2 } + 4 D O ^ { 2 }{/tex} 
{tex} = ( 2 A O ) ^ { 2 } + ( 2 D O ) ^ { 2 }{/tex} 
{tex} = ( 2 x ) ^ { 2 } + ( 2 y ) ^ { 2 }{/tex} 
{tex} \therefore A B ^ { 2 } + B C ^ { 2 } + C D ^ { 2 } + A D ^ { 2 } = A C ^ { 2 } + B D ^ { 2 }{/tex} 
Hence proved.

  • 2 answers

Parneet Kaur 6 years, 10 months ago

U can search in ncert solutions in this app

Sneha Singh?????? 6 years, 10 months ago

25/36
  • 1 answers

Honey ??? 6 years, 10 months ago

.
  • 0 answers
  • 1 answers

Honey ??? 6 years, 10 months ago

4 units
  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago

Given: l and m are the tangent to a circle such that l || m, intersecting at A and B respectively.
To prove: AB is a diameter of the circle.
Proof:
A tangent at any point of a circle is perpendicular to the radius through the point of contact.
{tex}\therefore{/tex} {tex}\angle X A O = 90 ^ { \circ }{/tex}
and {tex}\angle Y B O = 90 ^ { \circ }{/tex}
Since {tex}\angle X A O + \angle Y B O = 180 ^ { \circ }{/tex} 
An angle on the same side of the transversal is 180°.
Hence the line AB passes through the centre and is the diameter of the circle.

  • 0 answers
  • 1 answers

Yashasvi Gautam 6 years, 10 months ago

No if asked then write the way of construction
  • 2 answers

Payal Thakur 6 years, 10 months ago

Sry yrr glti se 7 ki jgh 3 ho gya aap 7 kr lena 3 ki jgh baki same ese hi h

Payal Thakur 6 years, 10 months ago

Let us assume to the contrary ,that √3 is rational. That is,we can find integers a and b(#0 )such that√3=a/b. Suppose a and b have a common factor other tha 1,then we can divide by the common factor , and assume that a and b are coprime. So,b√3=a Squaring both sides, a2 is divisible by 3 that a is also divisible by 3 So,we can write a=3c for some integer c. Substituting for a,we get 3b2= 9c2. This means that b2 is divisible by 3,and so b is also divisible by 3 ..a and b have at least 3 as a common factor. But this contradicts the fact that a and b are coprime .. This contradiction has arisen because of our incorrect assumption that √3 is rational.. So,we conclude that √3 is irrational..??
  • 2 answers

Fatma Naayab 6 years, 10 months ago

one side of triangle = sum of other two sides

Da Ya 6 years, 10 months ago

Use ncert bro
  • 4 answers

Raj Pal Singh 6 years, 10 months ago

Very imp

Fatma Naayab 6 years, 10 months ago

needed

Abhi Singh 6 years, 10 months ago

Yes in 4 and 3 marks question

Suman Kumar 6 years, 10 months ago

Yes ; its provide u full marks
  • 1 answers

Da Ya 6 years, 10 months ago

2\7

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App