No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Aman Kumar 6 years, 10 months ago

Use rs aggarwal bro
  • 1 answers

Sia ? 6 years, 4 months ago

Speed of motorboat in still water = 15 km/hr
Let Speed of the stream = x km/ hr
Then speed downstream = (15+x) km /hr
and speed upstream = (15-x) km /hr
According to the question

{tex}{30 \over 15+x} +{30 \over 15-x} = 4{1 \over 2}{/tex}

{tex}\implies 30 [{15 - x +15 +x \over (15+x) (15- x)}] = {9 \over 2}{/tex}

{tex}\implies {30 \times 30 \over 225 - x^2} = {9 \over 2}{/tex}

{tex}\implies {900 \over 225 - x^2} = {9 \over 2}{/tex}

{tex}\implies{/tex}- 9x2 + 2025 = 1800
{tex}\implies{/tex} - 9x2 = 1800 - 2025
{tex}\implies{/tex} 9x2 = 225
{tex}\implies{/tex} x2 = 25
{tex}\implies{/tex} {tex}x = \pm 5{/tex}
Speed of the motorboat cannot be negative. So, x = 5
Hence, speed of the stream = 5 km /hr.

  • 4 answers

Google User 6 years, 10 months ago

-4

Garima Choudhary 6 years, 10 months ago

It will be 0

Pr!Nce Pr@J@P@T! 6 years, 10 months ago

0

Priyansh Goyal 6 years, 10 months ago

0
  • 1 answers

Sia ? 6 years, 4 months ago


According to the question, The height of a cone is 30 cm. From its topside a small cone is cut by a plane parallel to its base.
Let the radii of smaller cone and original cone be r1 and r2 respectively and the height of smaller cone be h.
{tex}\triangle A B C \sim \triangle A P Q{/tex} 
{tex}\Rightarrow \quad \frac { h } { 30 } \sim \frac { r _ { 1 } } { r _ { 2 } }{/tex} ...(1)
Volume smaller cone {tex}= \frac { 1 } { 27 } \times{/tex} Volume of original cone
{tex}\Rightarrow \quad \frac { 1 } { 3 } \pi r _ { 1 } ^ { 2 } \times h = \frac { 1 } { 27 } \times \frac { 1 } { 3 } \pi r _ { 2 } ^ { 2 } \times 30{/tex} 
{tex}\Rightarrow \quad \left( \frac { r _ { 1 } } { r _ { 2 } } \right) ^ { 2 } \times \frac { h } { 30 } = \frac { 1 } { 27 }{/tex} 
{tex}\Rightarrow \quad \left( \frac { h } { 30 } \right) ^ { 2 } \times \frac { h } { 30 } = \frac { 1 } { 27 }{/tex} 
{tex}\left( \mathrm { Using } \frac { h } { 30 } = \frac { r _ { 1 } } { r _ { 2 } } \text { From } ( \mathrm { i } ) \right){/tex} 
{tex}\Rightarrow \quad \left( \frac { h } { 30 } \right) ^ { 3 } = \frac { 1 } { 27 }{/tex} 
{tex}\Rightarrow \quad h ^ { 3 } = \frac { 30 \times 30 \times 30 } { 27 }{/tex} 
h = 10 cm
Hence, required height = (30 - 10) = 20 cm

  • 1 answers

Garima Choudhary 6 years, 10 months ago

Wow , thanq and s2 u
  • 1 answers

Suman Kumar 6 years, 10 months ago

A number which has 2 or more than 2 factor
  • 3 answers

Affu 😊 6 years, 10 months ago

2/3πr^3

Pr!Nce Pr@J@P@T! 6 years, 10 months ago

2/3πr^3

Miss Angel 6 years, 10 months ago

2/3 pie r cube
  • 2 answers

Pr!Nce Pr@J@P@T! 6 years, 10 months ago

π×Φ/360 -sinΦ/2 ×cosΦ/2

Miss Angel 6 years, 10 months ago

Area of sector - area of triangle 60/360 (pie r square)- area of triangle
  • 2 answers

Tanmay Dhelia 6 years, 10 months ago

13th term is = 3+12*7 13th term is 84 Ans. 84+84= 168

Arpan Sinha 6 years, 10 months ago

the answer lies between 1-infinity
  • 4 answers

Garima Choudhary 6 years, 10 months ago

Composite no. is the no. which have more than two factors i.e 1, itself and any other no. for example 9 it has factors 1, 3 and 9 itself

Da Ya 6 years, 10 months ago

More than 2factors

Fatma Naayab 6 years, 10 months ago

composite no which has factor 1 , itself n one more factor like 4 =4×1 4=1×4 4=2×2

Sneha Singh?????? 6 years, 10 months ago

A composite no. Is a no. Which has factor 1 and itself
  • 3 answers

Ankit Tarar 6 years, 10 months ago

By this for formula। Xone plus Xtwo plus Xthee divide by two

Arpan Sinha 6 years, 10 months ago

give ur phone no. i will send the solution through photo on what's app

Abhishek Bishnoi 6 years, 10 months ago

Nahi pata
  • 0 answers
  • 1 answers

D.J Alok 6 years, 10 months ago

AC²= AB² + BC²
  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago

Let A be the event of getting the sum as a prime number i.e. 2,3,5,7,11
 Elementary events favourable to event A are:
(1, 1), (1, 2), (2, 1), (1, 4), (4, 1), (2, 3), (3, 2), (1, 6), (6, 1),
(2, 5), (5, 2), (3, 4), (4,3) , (6,5) and (5, 6).
Favourable number of elementary events = 15
Hence, required probability{tex}= \frac { 15 } { 36 } = \frac { 5 } { 12 }{/tex}

  • 4 answers

Garima Choudhary 6 years, 10 months ago

3Median =1Mode+2Mean

Shivani Rawat 6 years, 10 months ago

3 median= mode +2mean

Ayush Shukla???? 6 years, 10 months ago

Mode =3median-2mean

Rajan Tomar 6 years, 10 months ago

Mode = 3 median - 2 mean
  • 1 answers

Sia ? 6 years, 4 months ago

A cylinder and a cone have equal heights and equal radii of their bases.
So, As per given condition
{tex}\frac{Curved \ surface \ area \ of \ cylinder}{Curved \ surface \ area \ of \ cone}{/tex} = {tex}\frac{2 \pi rh}{\pi rl}{/tex} = {tex}\frac{2 \pi rh}{\pi r \sqrt{r^{2}+h^{2}}}{/tex}
{tex}\frac{8}{5}{/tex} = {tex}\frac{2 h}{\sqrt{r^{2}+h^{2}}}{/tex}
{tex}\Rightarrow{/tex}{tex}\frac{64}{25}{/tex} = {tex}\frac{4h^2}{r^2 + h^2}{/tex}
{tex}\Rightarrow{/tex}64r2 + 64h2 = 100h2
 {tex}\Rightarrow{/tex} 64r2 = 100h2 - 64h2
{tex}\Rightarrow{/tex}64r2 = 36h2
{tex}\Rightarrow{/tex}{tex}\frac{r^2}{h^2}{/tex} = {tex}\frac{36}{64}{/tex} = {tex}\frac{9}{16}{/tex}
{tex}\Rightarrow{/tex}{tex}\frac{r}{h}{/tex} = {tex}\frac{3}{4}{/tex}
{tex}\therefore{/tex}r : h = 3 : 4

  • 1 answers

Sia ? 6 years, 4 months ago

 
To construct: To construct a triangle of sides 5 cm, 6 cm and 7 cm and then a triangle similar to it whose sides are of {tex}\frac{7}{5}{/tex} the corresponding sides of the first triangle.
Steps of construction:

  1. Draw a triangle ABC of sides 5 cm, 6 cm and 7 cm.
  2. From any ray BX, making an acute angle with BC on the side opposite to the vertex A.
  3. Locate 7 points B1, B2, B3, B4, B5, B6 and B7 on BX such that BB1 = B1 B2 = B2 B3 = B3 B4 = B4 B5 = B5 B6 = B6 B7.
  4. Join B5 C and draw a line through the point B7, draw a line parallel to B5 C intersecting BC at the point C'.
  5. Draw a line through C' parallel to the line CA to intersect BA at A'.
    Then, A'BC' is the required triangle.
    Justification :
    {tex}\because CA||C'A'{/tex}  [By construction]
    {tex}\therefore {/tex} {tex}\triangle ABC \sim \triangle A'BC'{/tex} [AA similarity]
    {tex}\therefore \frac{{A'B}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{BC'}}{{BC}}{/tex} [By Basic Proportionality Theorem]
    {tex}\because {B_7}C'||{B_5}C{/tex} [By construction]
    {tex}\therefore \triangle B{B_7}C' \sim \triangle B{B_5}C{/tex} [AA similarity]
    But {tex}\frac{{B{B_5}}}{{B{B_7}}} = \frac{5}{7}{/tex} [By construction]
    Therefore, {tex}\frac{{BC}}{{BC'}} = \frac{5}{7} \Rightarrow \frac{{BC'}}{{BC}} = \frac{7}{5}{/tex}
    {tex}\therefore \frac{{AB}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{BC'}}{{BC}} = \frac{7}{5}{/tex}
  • 1 answers

Nikhil 6 years, 10 months ago

Answer is 1
  • 1 answers

Sia ? 6 years, 4 months ago

AC = {tex}\sqrt{\mathrm{AB}^{2}+\mathrm{BC}^{2}}{/tex}
{tex}\sqrt{14^{2}+48^{2}}{/tex} = {tex}\sqrt{2500}{/tex} = 50 cm

{tex}\angle{/tex}OQB = 90o {tex}\Rightarrow{/tex} OPBQ is a square

{tex}\Rightarrow{/tex} BQ = r

QA = 14 - r = AR (tangents from a external point are equal in length) 

Again PB = r,
PC = 48 - r {tex}\Rightarrow{/tex} RC = 48 - r (tangents from a external point are equal in length) 
AR + RC = AC {tex}\Rightarrow{/tex} 14 - r + 48 - r = 50
{tex}\Rightarrow{/tex} r = 6 cm.

  • 1 answers

Nikhil 6 years, 10 months ago

Proof of irrational, and show that any positive integer can be written in 3m, 3m + 1, these type of question are important
  • 1 answers

Rahul Hooda 6 years, 10 months ago

I don't know

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App