No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 3 answers

Pratha Shrivastava 1 year, 10 months ago

No

Divya Kumari 1 year, 10 months ago

No,because it had been curtailed from syllabus

Vanshika Jain 1 year, 10 months ago

No
  • 2 answers

P Raval 1 year, 10 months ago

A and R both are correct and a is correct explaination of r.

Gandhan Pavar Gandhan Pavar 1 year, 10 months ago

20. Assertion (A): 5+ √3 is an irrational number Reason (R): The sum or difference of a rational and an irrational number is always irrational.
  • 3 answers

Gandhan Pavar Gandhan Pavar 1 year, 10 months ago

20. Assertion (A): 5+ √3 is an irrational number Reason (R): The sum or difference of a rational and an irrational number is always irrational.

Vanshika Dewangan 1 year, 10 months ago

Thank u mera na standard h

Vanshika Jain 1 year, 10 months ago

Apke pass agar basic mathematics hai to ncert acche se karo aur agar standard math hai to nodia aap download kar lo vo aapko 30 sample paper dega
  • 1 answers

Preeti Dabral 1 year, 10 months ago

{tex}\begin{aligned} & \text { To prove : } \frac{1+\sec \mathrm{A}}{\sec \mathrm{A}}=\frac{\sec ^{12} \mathrm{~A}}{1-\cos \mathrm{A}} \\ & \text { LHS } \frac{1+\sec \mathrm{A}}{\sec \mathrm{A}}=\frac{1+\frac{1}{\cos \mathrm{A}}}{\frac{1}{\cos \mathrm{A}}} \\ & =\frac{\frac{\cos \mathrm{A}+1}{\cos \mathrm{A}}}{\frac{1}{\cos \mathrm{A}}} \\ & =\frac{\cos \mathrm{A}+1}{\cos \mathrm{A}} \times \frac{\cos \mathrm{A}}{1} \\ & =1+\cos \mathrm{A} \\ & =1+\cos \mathrm{A} \times \frac{1-\cos \mathrm{A}}{1-\cos \mathrm{A}} \\ & =\frac{(1)^2-(\cos \mathrm{A})^2}{1-\cos \mathrm{A}} \\ & =\frac{1-\cos 2 \mathrm{~A}}{1-\cos \mathrm{A}} \end{aligned}{/tex}

{tex}\begin{aligned} & =\frac{\sin ^2 \mathrm{~A}}{1-\cos \mathrm{A}} \\ & =\mathrm{RHS} \end{aligned}{/tex}

  • 1 answers

Preeti Dabral 1 year, 10 months ago

Given quadratic equation is p(x-4)(x-2)+(x-1)² = 0

=> p(x²-4x-2x+8)+(x²-2x+1) = 0

=> p(x²-6x+8)+(x²-2x+1) = 0

=> px²-6px+8p+x²-2x+1 = 0

=> (px²+x²)+(-6px-2x)+8p+1 = 0

=> (p+1)x²-(6p+2)x+(8p+1) = 0

On comparing with the standard quadratic equation is ax²+bx+c = 0 then

a = p+1

b = -(6p+2)

c = 8p+1

Given that

Given equation has real and equal roots

=> The discriminant = 0

We know that

The discriminant of ax²+bx+c = 0 is b²-4ac

Therefore, b²-4ac = 0

=> [-(6p+2)]²-4(p+1)(8p+1) = 0

=> (6p+2)²-4(p+1)(8p+1) = 0

=> (36p²+24p+4)-4(8p²+p+8p+1) = 0

=> (36p²+24p+4)-4(8p²+9p+1) = 0

=> 36p²+24p+4-32p²-36p-4 = 0

=> (36p²-32p²)+(24p-36p)+(4-4) = 0

=> 4p² -12p+0 = 0

=> 4p² - 12 p = 0

=> 4p(p-3) = 0

=> 4p = 0 or p-3 = 0

=> p = 0/4 or p = 3

=> p = 0 or p = 3

If p = 0 the term containing p doesn't exist .

Therefore, p = 3

  • 1 answers
Volume of a right circular cone= 3 1 ​ πr 2 h So, volume of the big cone= 3 1 ​ πr 2 (30) Volume of the small cone= 3 1 ​ πr 2 h Given that, 27 1 ​ ( 3 1 ​ πr 2 (30))= 3 1 ​ πr 2 h ⇒ 27 30 ​ =hcm ∴ The height above the base of the section made is (30−h)cm ⇒30− 27 30⇒28.89cm Height from base. solution.
  • 3 answers

Preeti Dabral 1 year, 10 months ago

To find the value of k

sol: A quadratic equation has equal real roots if the discriminant b2−4ac=0

x2−kx+4=0 is of form ax2+bx+c=0

∴a=1,b=−k,c=4

Hence the discriminant is 

(−k)2−4(1)(4)=0⟹k2−16=0⟹k2=16

Therefore, k=±4

Nikita Yadav 1 year, 9 months ago

4

Jatin Bansal 1 year, 10 months ago

4
  • 3 answers

K_Hushii 🍁 1 year, 9 months ago

X =-b+√b^2-4ac - ______________ 2a

Pragati Singh 1 year, 10 months ago

-B+√D/2A

P Raval 1 year, 10 months ago

-B±√D/2A
  • 1 answers

Bipul Kumar 1 year, 10 months ago

a square= 295
  • 3 answers

Tilak Raj 1 year, 8 months ago

x- x¹by x-x²equals to y-y¹by y-y² is also a formula 👍

Tilak Raj 1 year, 8 months ago

🤔

P Raval 1 year, 10 months ago

When three points are on the same line is known as collinear. AB+BC=AC.
  • 0 answers
  • 0 answers
  • 4 answers

Laxmikant Singh 1 year, 10 months ago

Y1/2

Tilak Raj 1 year, 10 months ago

Y=1/2

Abhinav Prakash 1 year, 10 months ago

Y=1/2

Tanu Kumari 1 year, 10 months ago

Y=1/2
  • 2 answers

Tilak Raj 1 year, 10 months ago

You can go through nodia app which gives 30 sample papers with solutions. You can download from here https://play.google.com/store/apps/details?id=com.nodiaapp

Abhinav Prakash 1 year, 10 months ago

Educart
  • 0 answers
  • 0 answers
  • 2 answers

Nandini . 1 year, 10 months ago

If sinA =4/5 Then according to pythagoras theorem H=5 P=4 B=3 TanA= p/b =4/3 CosA= b/h=3/5 TanA + cos2A= 4/3+ 2×3/5 =4/3+6/5 =20+18/15 =38/15

Bhavik Kasana 1 year, 10 months ago

SinA = P/H , P = 4 , H = 5, find base by phythagoras theorem, simple👍
  • 1 answers

Tilak Raj 1 year, 10 months ago

Question is incomplete
  • 2 answers

Jatin Bansal 1 year, 10 months ago

let us suppose 2√3 is a rational no then their positive integer a and b such that 2√3=a/b(where a and b are co-primes and their HCF=1) 2√3=a/b √3=a/2b From this, a/2b is a rational number. Also,√3 is rational number. But, we know √3 is an irrational number. So, our supposition is wrong. Hence, 2√3 is an irrational number. Hence proved

Sumit _Yt 1 year, 10 months ago

H
  • 1 answers

Sumit _Yt 1 year, 10 months ago

X=1,Y=1
  • 2 answers

Piyush Maheshwari 1 year, 10 months ago

Area of Square = side × side = 20.4 × 20.4 = 416.16 Sq cm

Sumit _Yt 1 year, 10 months ago

A=a2
  • 1 answers

Sumit _Yt 1 year, 10 months ago

=44. 79≅44. 8cm2.
  • 1 answers

A B 1 year, 10 months ago

Answer:- 2√3
  • 1 answers

Ujjala Tyagi 1 year, 10 months ago

0

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App