No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 6 years, 4 months ago

{tex}3x - 2y + 3 = 0{/tex}........(i)
{tex}4x + 3y - 47 = 0{/tex}......(ii)
By cross multiplication, we have
{tex}\therefore \frac { x } { [ ( - 2 ) \times ( - 47 ) - ( 3 \times 3 ) ] }{/tex}{tex}= \frac { y } { [ ( 3 \times 4 ) - ( - 47 ) \times 3 ] }{/tex}{tex}= \frac { 1 } { [ 3 \times 3 - ( - 2 ) \times 4 ] }{/tex}
{tex}\Rightarrow \quad \frac { x } { ( 94 - 9 ) } = \frac { y } { ( 12 + 141 ) } = \frac { 1 } { ( 9 + 8 ) }{/tex}
{tex}\Rightarrow \quad \frac { x } { 85 } = \frac { 1 } { 17 } , \frac { y } { 153 } = \frac { 1 } { 17 }{/tex}
{tex}17x = 85, \ 17y = 153{/tex}
{tex}\Rightarrow \quad x = \frac { 85 } { 17 } , y = \frac { 153 } { 17 }{/tex}
Therefore, the solution is {tex}x = 5,\ y = 9{/tex}

  • 1 answers

Sia ? 6 years, 4 months ago

If {tex}x^4+x^3+8x^2+ax +b{/tex} is exactly divisible by x2 + 1, the remainder after division should be zero.
Now let us perform long division

We get, remainder = x (a - 1) + (b - 7)
 x (a - 1) + (b - 7 ) = 0
{tex}\Rightarrow{/tex} x (a - 1) + (b - 7) = 0x + 0
{tex}\Rightarrow{/tex} a - 1 = 0 and b - 7 = 0 [On equating the coefficients of like powers of x]
{tex}\Rightarrow{/tex}a = 1 and b = 7

  • 2 answers

Pooja Sah 6 years, 8 months ago

What is the answer of this question

Yassmain Saini 5 years, 9 months ago

Pls answer this question
  • 2 answers

बबलु यादब 6 years, 8 months ago

592=252×2+88 252=88×2+76 88=76×1+12 76=12×6+4 12=4×3+0 Here,r=0 So,HCF OF 592 & 252 is 4

Yogita Ingle 6 years, 8 months ago

We need to find the H.C.F. of 592 and 252 and express it as a linear combination of 592 and 252.

By applying Euclid’s division lemma

592 = 252 x 2 + 88

Since remainder ≠ 0, apply division lemma on divisor 252 and remainder 88

252 = 88 x 2 + 76

Since remainder ≠ 0, apply division lemma on divisor 88 and remainder 76

88 = 76 x 1 + 12

Since remainder ≠ 0, apply division lemma on divisor 76 and remainder 12

76 = 12 x 6 + 4

Since remainder ≠ 0, apply division lemma on divisor 12 and remainder 4

12 = 4 x 3 + 0.

Therefore, H.C.F. = 4.

Now, 4 = 76 – 12 x 6

= 76 – 88 – 76 x 1 x 6

= 76 – 88 x 6 + 76 x 6

= 76 x 7 – 88 x 6

= 252 – 88 x 2 x 7 – 88 x 6

= 252 x 7- 88 x 14- 88 x 6

= 252 x 7- 88 x 20

= 252 x 7 – 592 – 252 x 2 x 20

= 252 x 7 – 592 x 20 + 252 x 40

= 252 x 47 – 592 x 20

= 252 x 47 + 592 x (-20)

Hence obtained.

  • 0 answers
  • 1 answers

बबलु यादब 6 years, 8 months ago

Root under 3tanthitha=1 Tanthitha=1/root under 3 》p=1 & b=rootunder 3 》h=root under 4= 2 Sin^2thitha-cos^2thitha 》(p/h)^2 - (b/h)^2 》1/4 - 3/4 》- 2/4 = - 1/2
  • 3 answers

Queen Ananya 6 years, 8 months ago

a=bq+r

Yogita Ingle 6 years, 8 months ago

For a pair of given positive integers ‘a’ and ‘b’, there exist unique integers ‘q’ and ‘r’ such that

a=bq+r, where 0≤r<b

Explanation:

Thus, for any pair of two positive integers a and b; the relation

a=bq+r, where 0≤r<b

will be true where q is some integer.

Mukambo ? 6 years, 8 months ago

?????
  • 1 answers

Rishita Singh 6 years, 8 months ago

A^2+b^2+2Ab
  • 3 answers

Sneha Singh 6 years, 8 months ago

Abhi book niii h

Sneha Singh 6 years, 8 months ago

Ques. Likh do please

Amisha Sharma ? 6 years, 8 months ago

Book nhi he?
  • 2 answers

Yogita Ingle 6 years, 8 months ago

Let the digit in the ones place be x and tens place be y
Hence the two digit number = 10y + x
Given that the two digit number = 4 times sum of its digits
⇒ 10y + x = 4(x + y)
⇒ 10y + x = 4x + 4y
⇒ 3x – 6y = 0
⇒ 3x = 6y
∴ x = 2y → (1)
It is also given that the two digit number = 2 times product of its digits
⇒ 10y + x = 2xy
Divide by xy both the sides, we get
10/x + 1/y = 2
Put x = 2y from (i), we get
10/2y + 1/y = 2
5/y + 1/y = 2
6/y = y
∴ y = 3
Hence x = 6
The two digit number is (10y + x) = 10(3) + 6 = 36

Vimla Devi 6 years, 8 months ago

36
  • 1 answers

Sia ? 6 years, 4 months ago

x2 - 6
Let p(x) = x2 - 6
For zeroes of p(x), p(x) = 0
{tex}\Rightarrow x ^ { 2 } - 6 = 0 \Rightarrow ( x ) ^ { 2 } - ( \sqrt { 6 } ) ^ { 2 } = 0{/tex}
{tex}\Rightarrow ( x - \sqrt { 6 } ) ( x + \sqrt { 6 } ) = 0{/tex}
Using the identity a2 - b2 = (a - b) (a + b)
{tex}\Rightarrow x - \sqrt { 6 } = 0 \text { or } x + \sqrt { 6 } = 0{/tex}
{tex}\Rightarrow x = \sqrt { 6 } \text { or } x = - \sqrt { 6 } \Rightarrow x = \sqrt { 6 } , - \sqrt { 6 }{/tex}
So, the zeroes of x2 - 6 are {tex}\sqrt 6 {/tex} and {tex} - \sqrt 6 {/tex}
Sum of zeroes
{tex}= ( \sqrt { 6 } ) + ( - \sqrt { 6 } ) = 0 = \frac { - 0 } { 1 } = \frac { - \text { Coefficient of } x } { \text { Coefficient of } x ^ { 2 } }{/tex}
Product of zeroes
{tex}= ( \sqrt { 6 } ) \times ( - \sqrt { 6 } ) = - 6 = \frac { - 6 } { 1 } = \frac { \text { Constant term } } { \text { Coefficient of } \mathrm { x } ^ { 2 } }{/tex}

Hence the relation between zeroes and coefficient is verified.

  • 1 answers

Sejal Kathait?????? 6 years, 8 months ago

What should we have to do in this question to find solution or anything else?
  • 1 answers

Sejal Kathait?????? 6 years, 8 months ago

But what we have to solve.....??????
  • 1 answers

Sia ? 6 years, 4 months ago

Let the polynomial be p(x).
By remainder theorem, p(2) = 1 and p(3) = 3.
p(x) can be expressed as q(x) × (x-2) × (x-3) + Ax + B, where Ax + B is the remainder when divided by (x -2) (x - 3). [Assuming p(x) as a cubic polynomial]
But p(2) = 1 and P(3) = 3,
2A + B = 1 and 3A + B = 3,
Solving the equations 2A + B = 1 and 3A + B = 3, we get A = 2 and B = -3
Hence the remainder when p(x) is divided by is (2x - 3).

  • 1 answers

Sia ? 6 years, 4 months ago

We have,
{tex}\frac { \cos ^ { 2 } 20 ^ { \circ } + \cos ^ { 2 } 70 ^ { \circ } } { \sec ^ { 2 } 50 ^ { \circ } - \cot ^ { 2 } 40 ^ { \circ } }{/tex} +2 cosec258° - 2cot58° tan 32° - 4 tan13° tan37° tan45° tan53° tan77°
{tex}\frac { \cos ^ { 2 } 20 ^ { \circ } + \cos ^ { 2 } \left( 90 ^ { \circ } - 20 ^ { \circ } \right) } { \sec ^ { 2 } 50 ^ { \circ } - \cot ^ { 2 } \left( 90 ^ { \circ } - 50 ^ { \circ } \right) }{/tex} + 2cosec258° - 2cot58° tan (90° - 58°)- 4tan13° tan37° tan45° tan(90° - 37°) tan(90° -13°)
{tex}\frac { \cos ^ { 2 } 20 ^ { \circ } + \sin ^ { 2 } 20 ^ { \circ } } { \sec ^ { 2 } 50 ^ { \circ } - \tan ^ { 2 } 50 ^ { \circ } }{/tex} + 2cosec258° - 2cot258° - 4 tan13° tan37° tan45° cot37° cot13°
{tex}\frac { 1 } { 1 }{/tex} + 2(cosec258° - cot258°) - 4(tan13° cot13°) (tan37° cot37°) tan45°
= 1 + 2 - 4 {tex}\times{/tex} 1 {tex}\times{/tex} 1 {tex}\times{/tex} 1 = 3 - 4 = -1

1,1
  • 0 answers
  • 1 answers

Anjali Sharma 6 years, 8 months ago

Sum of zeroes alpha + beta =root 3 +(-root 3)=0 Product of zeroes=-3 The polynomial formed is xsquare-(sum) x+ product The polynomial is: x square - 0x+(-3) Divide the given polynomial with this polynomial formed. It will divide the polynomial perfectly. The factorise the quotient we will get from this division and you will get other two zeroes
  • 0 answers
  • 0 answers
  • 2 answers

Amit Chaudhary 6 years, 8 months ago

First make it in standard form I.e.a*2+bx+c.then solve it.

Pooja Sah 6 years, 8 months ago

I think after 6x there is square. Then u can convert this equation inquadratic form then after use spilliting middle term or quadratic formula.
  • 2 answers

Pooja Sah 6 years, 8 months ago

Delhi

Tanya Singhal 6 years, 8 months ago

Capital of India
  • 0 answers
  • 1 answers

Meena Verma 6 years, 8 months ago

Anser
  • 0 answers
  • 2 answers

Yogita Ingle 6 years, 8 months ago

Let x = ones digit
and y = tens digit
then from "a two digit number is 4 more than 6 times the sum of its digits":
x + 10y = 6(x+y)+4
x + 10y = 6x+6y+4
10y = 5x+6y+4
4y = 5x+4. ......... (i)
and, from "if 18 is subtracted from the number,the digits are reversed.find the number"
x+10y -18 = y+10x
10y -18 = y+9x
9y -18 = 9x
y -2 = x
substitute the above into (i)
4y = 5x+4
4y = 5(y-2)+4
4y = 5y-10+4
4y = 5y-6
4y+6 = 5y
6 = y
substitute above into (i), we get
4y = 5x+4
4(6) = 5x+4
24 = 5x+4
20 = 5x
4 = x
The number is 64.

 

Arman Dodhiya 5 years, 9 months ago

-8

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App