No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 6 years, 4 months ago

if -2 and -1 are zeros of f(x) = 2x4 + x3 - 14x2 - 19x - 6
x+2 and x+1 are factors of f(x)
So (x + 2)(x + 1) = x2 + x + 2x + 2 = x2 + 3x + 2 is a factor of f(x)

On long division of f(x) by x2 + 3x + 2 we get

f(x) = 2x4 + x3 - 14x2 - 19x - 6 = (2x2 - 5x - 3)(x2 + 3x + 2)
= (2x + 1)(x - 3)(x + 2)(x + 1)
Therefore, zeroes of the polynomial = {tex}\frac{{ - 1}}{2}{/tex}, 3, -2, -1.

  • 1 answers

Gaurav Seth 6 years, 8 months ago

Given: 

Equation: kx²-14x+8= 0

Also, One root of this Equation is 2

Substitute the Given value in Equation!


kx²-14x+8 = 0

k(2)² -14(2)+8 = 0

k4-28+8 = 0

4k-20 = 0

4k= 20

•°• k = 20/4

=> k = 5
 

  • 1 answers

Yash Goyal 6 years, 8 months ago

0
  • 0 answers
  • 0 answers
  • 0 answers
  • 1 answers

Sia ? 6 years, 7 months ago

Let a be the first term and d be the common difference of the given AP. Then,
Sm = n {tex}\Rightarrow{/tex} {tex}\frac{m}{2}{/tex}[2a + (m-1)d] = n
{tex}\Rightarrow{/tex} 2am + m(m- 1)d - 2n ...... (i)
And, S= m {tex}\Rightarrow{/tex}{tex}\frac{n}{2}{/tex}[2a + (n - 1)d] = m
{tex}\Rightarrow{/tex} 2an + n(n - 1)d = 2m ...... (ii)
On subtracting (ii) from (i), we get
2a(m-n) + [(m2 - n2) - (m - n)]d = 2(n - m)
{tex}\Rightarrow{/tex} (m - n)[2a + (m + n - 1)d] = 2(n - m)
{tex}\Rightarrow{/tex} 2a + (m + n- 1)d = -2 ..... (iii)
Sum of the first (m + n) terms of the given AP
{tex}\frac{{(m + n)}}{2}{/tex}{tex}\cdot{/tex}{2a + (m + n - 1)d}
{tex}= \frac { ( m + n ) } { 2 } \cdot ( - 2 ) = - ( m + n ){/tex} [using (iii)].
Hence, the sum of first (m + n) terms of the given AP is -(m + n).

  • 1 answers

Priyanshi Kushwaha 6 years, 8 months ago

X=0 ,y=0
  • 1 answers

Sia ? 6 years, 7 months ago

No. of members in army contingent = 616
No. of members in an army band = 32

Maximum number of columns = HCF of (616, 32)

Now Let us find  HCF of 616 and 32
By Euclid’s division lemma
{tex}\begin{array}{l}616=32\times19+8\\32=8\times4\\So\;HCF(616,32)\;is\;8\\\end{array}{/tex}
Hence maximum number of columns = 8

  • 1 answers

Priyanshi Kushwaha 6 years, 8 months ago

Isme krna kya h
  • 2 answers

Rohit Sahan? 6 years, 8 months ago

Hlow shreya

Shreya Choudhary 6 years, 8 months ago

k is any real number
  • 1 answers

Hitanshi Pahuja 6 years, 8 months ago

There r infinity rational no.
  • 2 answers

Khushi Arora 6 years, 8 months ago

Where's equation.?

Priyanshi Kushwaha 6 years, 8 months ago

Equation kaha h
  • 1 answers

Yogita Ingle 6 years, 8 months ago

(x2-y2)2
= (x2)2 - 2x2y2 + (y2)2
= x4 - 2x2y2 + y4

  • 2 answers

Gungun Lalwani ? 6 years, 8 months ago

No info has been given

Rohit Sahani? 6 years, 8 months ago

Kisi v din result aa sakta hai jaise 12 ka aaya tha
  • 1 answers

Gungun Lalwani ? 6 years, 8 months ago

??
  • 2 answers

Rohit Sahani? 6 years, 8 months ago

Hlow

Rohit Sahani? 6 years, 8 months ago

Kiska
  • 1 answers

Sia ? 6 years, 7 months ago

You can get them in the revision notes of the chapters : <a href="https://mycbseguide.com/cbse-revision-notes.html">https://mycbseguide.com/cbse-revision-notes.html</a>

  • 1 answers

Sia ? 6 years, 7 months ago

Let a be the positive integer and b = 4.
Then, by Euclid’s algorithm, a = 4q + r for some integer q ≥ 0 and r = 0, 1, 2, 3 because 0 ≤ r < 4.
So, a = 4q or 4q + 1 or 4q + 2 or 4q + 3.
{tex}(4q)^3\;=\;64q^3\;=\;4(16q^3){/tex}
= 4m, where m is some integer.
{tex}(4q+1)^3\;=\;64q^3+48q^2+12q+1=4(\;16q^3+12q^2+3q)+1{/tex}
= 4m + 1, where m is some integer.
{tex}(4q+2)^3\;=\;64q^3+96q^2+48q+8=4(\;16q^3+24q^2+12q+2){/tex}
= 4m, where m is some integer.
{tex}(4q+3)^3\;=\;64q^3+144q^2+108q+27{/tex}

=4×(16q3+36q2+27q+6)+3
= 4m + 3, where m is some integer.
Hence, The cube of any positive integer is of the form 4m, 4m + 1 or 4m + 3 for some integer m.

  • 2 answers

Yogita Ingle 6 years, 8 months ago

No.
Justification:
Let a be any positive integer.
Then by Euclid’s division lemma, we have a
= bq + r, where 0 ≤ r < b
For b = 3, we have
a = 3q + r, where 0 ≤ r < 3 ...(i)
So, The numbers are of the form 3q, 3q + 1 and 3q + 2.
So, (3q)2 = 9q2 = 3(3q2)
= 3m, where m is a integer.
(3q + 1)2 = 9q2 + 6q + 1
= 3(3q2 + 2q) + 1
= 3m + 1, where m is a integer.
(3q + 2)2 = 9q2 + 12q + 4, which cannot be expressed in the form 3m + 2.
Therefore, Square of any positive integer cannot be expressed in the form 3m + 2.

Devansh Yadav 6 years, 8 months ago

Let n be any orbitory number
  • 1 answers

Yogita Ingle 6 years, 8 months ago

  tan
i) Tanθ = opposite side/adjacent side
ii) Tan θ = sinθ/cos θ
cot
i) Cot θ = adjacent side/opposite sidr
ii) Cot θ = cosθ/ sin θ

  • 2 answers

Ãïsh ,,, 6 years, 8 months ago

Ok

【 Yash 】 6 years, 8 months ago

Ha bhi...???
  • 4 answers
Hm hitman ki ..❤️

Bjp King... ??? 6 years, 8 months ago

Kiski Hitman ki na ???Bdalna bhi nhi....???

Amira ❤ 6 years, 8 months ago

Dekho Ye Pagli bilkul na Badli...Ye Tu wahi Deewani Hai..??????

Bjp King... ??? 6 years, 8 months ago

Kaun ???
  • 2 answers

Aravind Chidambaram 6 years, 8 months ago

x2 -(sum of zeros)(€)x+(product of zeros)(£) GIVEN = € = 1/4, £ = -1. = x2 - 1/4x -1 = 4×x2 -4×1/4x -1 = 4x2 -1x -1 Hence, the equation is 4x2 -x -1 ???

Subhashini Subha 6 years, 8 months ago

Find the polynomial
  • 3 answers
Hi bestir

Rohit Sahani? 6 years, 8 months ago

Hlow

Ãïsh ,,, 6 years, 8 months ago

Hiiiiii bestie
  • 4 answers

Bjp King... ??? 6 years, 8 months ago

Dhanyawad...???

Ãïsh ,,, 6 years, 8 months ago

Ya

Yaaro Ka Yaar????? 6 years, 8 months ago

wa bhai tere gaane

Bjp King... ??? 6 years, 8 months ago

हां भाई।।।।
  • 1 answers

Priyanshi Kushwaha 6 years, 8 months ago

4/3

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App