No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Khushman Singh 6 years, 8 months ago

Yes
  • 0 answers
  • 1 answers

Prangik Kakati 6 years, 8 months ago

No.2 equation kaha gya?
  • 2 answers

??.Dil Lagi Kudi Agra Di.?? 6 years, 8 months ago

Byy..

Rohit Sahani ? 6 years, 8 months ago

Okk bye
  • 1 answers

Sia ? 6 years, 4 months ago

{tex}abx^2 + (b^2 - ac)x - bc = 0 {/tex}
{tex}\Rightarrow{/tex} {tex}abx^2 + b^2x - c(ax + b) = 0 {/tex}
{tex}\Rightarrow{/tex} {tex}bx(ax + b) - c(ax + b) = 0 {/tex}
{tex}\Rightarrow{/tex}{tex}(bx - c)(ax + b) = 0 {/tex}
x = {tex}\frac{c} {b}{/tex}{tex}\frac{-b}{a}{/tex}

  • 1 answers

Sia ? 6 years, 4 months ago

LHS=(cosecA - cotA)2 = {tex}\left( \frac { 1 } { \sin A } - \frac { \cos A } { \sin A } \right) ^ { 2 }{/tex}
{tex}= \left( \frac { 1 - \cos A } { \sin A } \right) ^ { 2 }{/tex}
{tex}= \frac { ( 1 - \cos A ) ^ { 2 } } { \sin ^ { 2 } A }{/tex}
{tex}= \frac { ( 1 - \cos A ) ^ { 2 } } { 1 - \cos ^ { 2 } A }{/tex}
{tex}= \frac { ( 1 - \cos A ) ^ { 2 } } { ( 1 - \cos A ) ( 1 + \cos A ) }{/tex}
{tex}= \frac { 1 - \cos A } { 1 + \cos A }{/tex}

Hence proved

  • 5 answers

??Bestie Ki Bestie?? 6 years, 8 months ago

?

Bindass Girls ?? 6 years, 8 months ago

Meri bhi mst ek dm?

??Bestie Ki Bestie?? 6 years, 8 months ago

Badia chal rhi hai khushi???

??.Dil Lagi Kudi Agra Di.?? 6 years, 8 months ago

Mst

Gungun Lalwani ? 6 years, 8 months ago

Now we are in 11th
  • 1 answers

Anurag Singh 6 years, 8 months ago

Abe kutte tujhe dekh ke samajh Nahi aa raha Kya saale
  • 1 answers

Deepak Mishra 6 years, 8 months ago

A sequence in which each term differs from its preceding term by a constant is called an arithmetic progression.
  • 1 answers

Sia ? 6 years, 4 months ago

Let h is height of big building,here as per the diagram.
AE = CD = 8 m (Given)
BE = AB-AE = (h - 8) m
Let  AC = DE = x
Also, {tex}\angle F B D = \angle B D E = 30 ^ { \circ }{/tex} 
{tex}\angle F B C = \angle B C A = 45 ^ { \circ }{/tex}

In {tex}\triangle {/tex}ACB, {tex}\angle A = 90 ^ { \circ }{/tex} 
{tex}\tan 45 ^ { \circ } = \frac { A B } { A C }{/tex} 
{tex}\Rightarrow {/tex} x = h, ...(i)
In {tex}\vartriangle {/tex}BDE, {tex}\angle E = 90 ^ { \circ }{/tex} 
{tex}\tan 30 ^ { \circ } = \frac { B E } { E D }{/tex} 
{tex}\Rightarrow \quad x = \sqrt { 3 } ( h - 8 ){/tex}  .(ii) 
From (i) and (ii), we get 
{tex}h = \sqrt { 3 } h - 8 \sqrt { 3 }{/tex}
h(√3 - 1) = 8√3
h = {tex}\frac{8\sqrt3}{\sqrt3-1}=\frac{8\sqrt3}{\sqrt3-1}×\frac{\sqrt3+1}{\sqrt3+1}{/tex}
= {tex}\frac{1}{2}×(24+8√3)=\frac{1}{2}×(24+13.84)=18.92 m{/tex}
Hence height of the multistory building is 18.92 m and the distance between two buildings is 18.92 m.

  • 0 answers
  • 1 answers

Pooja Elligari 6 years, 7 months ago

X=-3=2
  • 1 answers

Sia ? 6 years, 4 months ago

{tex}\frac{1}{7x}{/tex} + {tex}\frac{1}{6y}{/tex} = 3 .......(i)
and {tex}\frac{1}{2x}{/tex} - {tex}\frac{1}{3y}{/tex} = 5 ...........(ii)
Multiplying equation (ii) by {tex}\frac{1}{2}{/tex}, we get
 {tex}\frac{1}{4x}{/tex} - {tex}\frac{1}{6y}{/tex} = {tex}\frac{5}{2}{/tex} ..........(iii)
Adding eq. (i) and (iii), we get
{tex}\frac{1}{4x}{/tex} + {tex}\frac{1}{7x}{/tex} = {tex}\frac{5}{2}{/tex} + 3
{tex}\Rightarrow{/tex} {tex}\frac{7 + 4}{28x}{/tex} = {tex}\frac{11}{2}{/tex}
{tex}\Rightarrow{/tex}{tex}\frac{11}{28x}{/tex} = {tex}\frac{11}{2}{/tex}
{tex}\Rightarrow{/tex} 28x = 2 
{tex}\Rightarrow{/tex} x = {tex}\frac{1}{14}{/tex}
Putting the value of x in eq.(i), we get
{tex}\frac{1}{7(\frac1{14})}{/tex} + {tex}\frac{1}{6y}{/tex} = 3
y = {tex}\frac{1}{6}{/tex}
Hence x = {tex}\frac{1}{14}{/tex} and y = {tex}\frac{1}{6}{/tex} is the solution of given system of equations.

  • 2 answers

Kuldeep Bestie Sahiba?? 6 years, 8 months ago

Ok

Yash ? 6 years, 8 months ago

Bilkul..bbye
  • 1 answers

Suruthi Suruthi 6 years, 8 months ago

Why kharif crops cannot be grown in rabi season
  • 0 answers
  • 1 answers

Sia ? 6 years, 7 months ago

Let f(x)=3x2 + 4x +2k
If -2 is zero of f(x) then f(-2)=0 then f(-2)=0
{tex}\Rightarrow{/tex} 3 × (-2)² + 4 × -2 + 2k = 0
{tex}\Rightarrow{/tex} 12 - 8 + 2k = 0
{tex}\Rightarrow{/tex} 4 + 2k = 0
{tex}\Rightarrow{/tex} 2k = -4
{tex}\Rightarrow{/tex} k = {tex}\frac{{ - 4}}{2}{/tex}
{tex}\Rightarrow{/tex} k = -2

  • 1 answers

Sia ? 6 years, 7 months ago

The given polynomial is  -x3 + 7x - 6 and let f (x) = -x3 + 7x - 6 .
Since 1 is a zero of f(x), so (x - 1) is a factor of f(x).
Now we divide f(x) =  -x3 + 7x - 6 by (x - 1), we obtain
 

Where quotient = (-x- x + 6)
{tex}\therefore{/tex} f(x) = (-x+ 7x - 6) = (x - 1)(-x- x + 6)
{tex}= - ( x - 1 ) \left( x ^ { 2 } + x - 6 \right) = - ( x - 1 ) \left( x ^ { 2 } + 3 x - 2 x - 6 \right){/tex}
{tex}= ( 1 - x ) [ x ( x + 3 ) - 2 ( x + 3 ) ] = ( 1 - x ) ( x + 3 ) ( x - 2 ){/tex}
{tex}\therefore{/tex} f(x) = 0 {tex}\Rightarrow{/tex} {tex}( 1 - x ) ( x + 3 ) ( x - 2 ){/tex} = 0
{tex}\Rightarrow{/tex} (1 - x ) = 0 or (x + 3) = 0 or (x - 2) = 0
{tex}\Rightarrow{/tex} x = 1 or x = -3 or x = 2.
Thus, the other zeros are -3 and 2

  • 1 answers

Arjun Bhatty 6 years, 8 months ago

b² - 4ac = (11)² - 4(1)(13) = 121 - 52 = 69 x = -b +/- √69/2a. =. -11+/-√69/2 So x = -11 + √69/2. Or. x = -11-√69/2
  • 2 answers

Saptarshi Ghosh 6 years, 8 months ago

Let, 'n' be a positive integer. By using Euclid's Division Lemma, 'n' can be written in the form of— 3q+r, where 0 <= r <3. Therefore, r = {0,1,2} Case 1:r = 0 n = 3q =>n³ = 27q³ = 3m (where m = 9q³) Case 2:r = 1 n = 3q+1 =>n³ = 27q³+27q²+9q+1 = 3m +1(where m = 9q³+9q²+3q) Case 3:r = 2 n = 3q+2 =>n³ = 27q³+54q²+36q+8 = 3m+2(where m = 9q³+18q²+12q+2) Hence, it is proved that the cube of any positive integer can be written in the form of 3m or 3m+1 or 3m+2. OR We know that the cube of any positive integer is a positive integer. On applying Euclid's division lemma, n³ = 3m+r, where 0 ≤ r < 3 Therefore, r = {0,1,2} Therefore, n³ = 3m or 3m+1 or 3m+2

Tanmayee? Hariyan? 6 years, 8 months ago

Ex: agar tum 3m le rahe ho vaha pe eg taur par 3q lena aur use square kar 'q' se aage jo bhi tumhe milega use 'm' consider karo aur doubt katam
  • 0 answers
  • 1 answers

Sia ? 6 years, 7 months ago

Since √2=1.414 and √7=2.646 as

1.414<2<2.646
Thus,there is only one integer (2) between them.

but there are many irrational number between them such as √3 ,√4,√5 and √6.

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App