No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 6 years, 7 months ago

{tex}\begin{array}{l}(2\times5)^{\mathrm n}=2^{\mathrm n}\times5^{\mathrm n}\end{array}{/tex}

{tex}\text{=10}^n{/tex}

{tex}\text{If n=0 then 10}^0\text{=1}{/tex}

{tex}\text{If n>0 then 10}^n\text{ will end with 0 }{/tex}

{tex}\mathrm{If}\;\mathrm n<0\;\mathrm{then}\;10^{\mathrm n}\;\mathrm{ends}\;\mathrm{with}1\;(\mathrm e.\mathrm g.\;0.1,0.01,0.001){/tex}

Hence  for all values of n,   {tex}2^n\times 5^n{/tex} can never end with 5.

  • 4 answers

Ankit ?? Kumar 6 years, 8 months ago

49

Arsh Kumar 6 years, 8 months ago

7+7*7-7=7+49-7=56-7=49

Vartika Singh??? 6 years, 8 months ago

49

Nayanika Mallick 6 years, 8 months ago

7+49-7 56-7 =49
  • 1 answers

Sia ? 6 years, 7 months ago

{tex}\frac{x}{2} + \frac{{2y}}{3} = - 1{/tex} ....(1)
{tex}x - \frac{y}{3} = 3{/tex} ...(2)

  1. Elimination method: Multiplying equation (2) by 2, we get (3)
    {tex}2x - \frac{2}{3}y = 6{/tex} ....(3)
    {tex}\frac{x}{2} + \frac{{2y}}{3} = - 1{/tex} ....(1)
    Adding (3) and (1), we get
    {tex}\frac{5}{2}x = 5{/tex}
     ⇒ x =2
    Putting value of x in (2), we get
    2− {tex}\frac{y}{3}{/tex}= 3
    ⇒ y =−3
    Therefore, x =2 and y =−3
  2. Substitution method:{tex}\frac{x}{2} + \frac{{2y}}{3} = - 1{/tex} ....(1)
    {tex}x - \frac{y}{3} = 3{/tex} ....(2)
    From equation (2), we can say that {tex}x = 3 + \frac{y}{3} = \frac{{9 + y}}{3}{/tex}
    Putting this in equation (1), we get
    {tex}\frac{{9 + y}}{6} + \frac{2}{3}y = - 1{/tex}
    {tex} \Rightarrow \;\frac{{9 + y + 4y}}{6} = - 1{/tex}
    ⇒ 5y +9=−6
    ⇒ 5y =−15
    ⇒ y =−3
    Putting value of y in (1), we get
    {tex}\frac{x}{2} + \frac{2}{3}( - 3) = - 1{/tex}
    ⇒ x = 2
    Therefore, x =2 and y =−3.
  • 3 answers

Mohalla Boy... ??? 6 years, 8 months ago

49

Tathagat Chavada 6 years, 8 months ago

wrong

Silent_Girl ?Khuhbu 6 years, 8 months ago

49
  • 1 answers

Sia ? 6 years, 7 months ago

Let the first term of an A.P be {tex} a{/tex}, common difference {tex}d{/tex},
{tex}d = - 6{/tex}
an = a + (n -1)d
a16 = a + (16 - 1)(- 6)
= a + (15)(- 6)
= a - 90
a12 = a + (12 - 1)(-6 )
= a + 11(-6)
= a - 66
a16 -a12 = (a-  90) - ( a - 66)
= a - 90 - a + 66
= - 24

  • 2 answers

Ramesh Kumar 6 years, 8 months ago

Its an identity which is (a+b)(a-b)=a^2-b^2
A^2 - B^2
  • 1 answers

Sia ? 6 years, 7 months ago

More than method: cumulative frequency

Weight No. of students Weight more than Cumulative frequency
38-40 3 38 35
40-42 2 40 32
42-44 4 42 30
44-46 5 44 26
46-48 14 46 21
48-50 4 48 7
50-52 3 50 3

On X-axis plot lower class limits.On Y-axis plot cumulative frequency. 
We plot the points (38,35),(40,32),(42,30),(44,26),(46,26),(48,7),(50,3).
Less than method :

Weight (in kg) No. of students Cumulative frequency
36-38 0 0
38-40 3 3
40-42 2 5
42-44 4 9
44-46 5 14
46-48 14 28
48-50 4 32
50-0 3 35

On x-axis plot upper class limits.On Y-axis plot cumulative frequency
We plot the points (38,0),(40,3),(42,5),(44,9),(46,4),(48,28),(50,32),(52,35).

We find the two types of curves intersect at a point P. From point P perpendicular PM is draw on x-axis
The verification,
We have
Now, N = 35
{tex}\frac { N } { 2 } = 17.5{/tex}
The cumulative frequency just greater than {tex}\frac {N}{2}{/tex} is 28 and the corresponding class is 46 - 48.
Thus 46 - 48 is the median class such that
L = 46, f = 14, C= 14 h = 2
Median {tex}= L + \frac { \frac { N } { 2 } - c _ { 1 } } { f } \times h{/tex}
{tex}= 46 + \frac { 17.5 - 14 } { 14 } \times 2{/tex}
{tex}= 46 + \frac {7}{14}{/tex}
= 46.5
Median = 46.5 kg
Hence verified.

  • 0 answers
  • 1 answers

Anuradha Uikey 6 years, 8 months ago

May be sumit's age is 45 year and his son age is 15 year
  • 2 answers

Arjun Bhatty 6 years, 8 months ago

Not possible

Akarsh Arya 6 years, 8 months ago

What I have to do here,should I solve it for (x) and (y)??? Or what??
  • 1 answers

Sia ? 6 years, 7 months ago

x + y = 14  ....(1)
x - y = 4 ....(2)
x = 4 + y from equation (2)
Putting this in equation (1), we get
4+y +y =14
⇒ 2y =10
⇒ y = 5
Putting value of y in equation (1), we get
x  + 5 = 14
⇒ x = 14 - 5 = 9
Therefore, x =9 and y =5

  • 4 answers

Ias Aspirant??? Khushi 6 years, 8 months ago

Correct

Yash ? 6 years, 8 months ago

2+3=4 kaise....glti se...???

Gungun Lalwani ? 6 years, 8 months ago

Galti se..??

Ias Aspirant??? Khushi 6 years, 8 months ago

Sorry sorry bhai ne type Kiya?????
  • 1 answers

Gungun Lalwani ? 6 years, 8 months ago

Yaha honey???nahi hai..varna voh to ek minute me answer kar deta
  • 1 answers

Sia ? 6 years, 7 months ago

tan2θ– sin2θ
{tex} = {\tan ^2}\theta - \frac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} \cdot {\cos ^2}\theta \left[ {\because {{\tan }^2}\theta = \frac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}} \right]{/tex}
= tan2θ– tan2θcos2θ
= tan2θ(1 – cos2θ) {tex}\left[ \because \sin ^ { 2 } \theta = 1 - \cos ^ { 2 } \theta \right]{/tex}

  • 2 answers

Akarsh Arya 6 years, 8 months ago

By multipying it...for example 6²=>6×6=36!!!!!

Akash Rajput 6 years, 8 months ago

By dividing
  • 3 answers

Gauri _? 6 years, 8 months ago

Yes...

Raunak Patel 6 years, 8 months ago

Yess

Ajeet Patel 6 years, 8 months ago

Yes get more refreshers
  • 3 answers

Gauri _? 6 years, 8 months ago

More and more practice can help to improve maths...

Shiva?? Garg?? 6 years, 8 months ago

When you cannot solve any questions then help with side book is reliable

Zaid Siddiqui 6 years, 8 months ago

For better mind and concentrate as well as focus
  • 1 answers

Sia ? 6 years, 7 months ago

445809714

  • 1 answers

Sahithi Chandolu 6 years, 8 months ago

HCF×LCM=PRODUCT OF 2 NO.S LCM=PRODUCT OF TWO NO.S/HCF LCM=306×657/9 LCM=22338
  • 1 answers

Sia ? 6 years, 7 months ago

{tex}2x - 3y + 6 = 0{/tex}
{tex}\Rightarrow y = \frac { 2 x + 6 } { 3 }{/tex}

x -3 0
y 0 2

{tex}2x + 3y - 18 = 0{/tex}
{tex}\Rightarrow y = \frac { 18 - 2x } { 3 }{/tex}

x 0 3
y 6 4


Thus, the two graph lines intersect at (3, 4)
{tex}\therefore{/tex}  x = 3 and y = 4 is the solution of given system of equations
The vertices of the triangle formed by these lines and y - axis are (3, 4), (0, 6) and (0, 2)
So, height of the triangle
= distance from (3, 4) to y-axis
= 3 units
Base = 4 units
Area of the triangle = {tex}\frac { 1 } { 2 } \times \text { base } \times \text{height}{/tex}
{tex}= \frac { 1 } { 2 } \times 4 \times 3{/tex}
= 6 sq. units

  • 1 answers

Kuldeep Bestie Sahiba?? 6 years, 8 months ago

??

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App