No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Gaurav Seth 6 years, 7 months ago

Question: What must be added to f(x) = 4x4 + 2x3 – 2x2 + x – 1 so that the resulting polynomial is divisible by g(x) = x2 + 2x – 3?

By division algorithm, we have

Clearly, RHS is divisible by g(x). Therefore, LHS is also divisible by g(x). Thus, if we add – r(x) to f(x) then the resulting polynomial is divisible by g(x). Let us now find the remainder when f(x) is divided by g(x).

Hence, we should add –r(x) = 61x – 65 to f(x) so that the resulting polynomial is divisible by g (x).

  • 2 answers

Gaurav Seth 6 years, 7 months ago

Question: cosec theta=x +1/4x prove that cosec theta+cot theta=2x or 1/2x

Solution:

Jabra Fan ? 6 years, 7 months ago

Its 2ooo long
  • 1 answers

Sia ? 6 years, 4 months ago

{tex} \frac{{147}}{{120}}{/tex}
={tex} \frac{{49}}{{40}}{/tex}
= {tex} \frac{{122.5}}{{100}}{/tex}
= 1.225 thus the decimal expansion has three digits after the decimal point.

  • 1 answers

Gaurav Seth 6 years, 7 months ago

Trigonometric Ratios Of Complementary Angles


We know complementary angles are pair of angles whose sum is 90°
Like 40°, 50°, 60°, 30°, 20°, 70°, 15°, 75° ; etc,
Formulae:
sin (90° – θ) = cos θ,         cot (90° – θ) = tanθ
cos (90° – θ) = sin θ,         sec (90° – θ) = cosec θ
tan (90° – θ) = cot θ,         cosec (90° – θ) = sec θ

  • 3 answers

Somya Garg 6 years, 7 months ago

HCF × LCM= product of two no.s 9× LCM= 306×657 LCM= 22338

Anjali Sontakke 6 years, 7 months ago

HCF(a & b)×LCM (a & b)=a×b 9 × LCM(a & b) =306 × 657 9 × LCM(a & b ) =201042 LCM(a & b ) = 201042 ________ 9 LCM(a & b)= 22338

Tanishk The Avenger 6 years, 7 months ago

2238
  • 2 answers

Sanket Arjun 6 years, 7 months ago

7119

Anjali Sontakke 6 years, 7 months ago

LCM(a & b) × HCF(a & b) = a × b 56952 × 113 = 904 × b 6435576 = b _________ 904 7119=b
  • 3 answers

Srijan Mishra 6 years, 7 months ago

Nice

Harshita Naagar 6 years, 7 months ago

?

Harshita Naagar 6 years, 7 months ago

Let the numerator be x and denominator be 2x +4. Fraction is x/(2x +4) when both r decreased by 6, numerator becomes = x-6 and denominator becomes = 2x +4-6=2x-2 Denominator becomes 12 times the numerator 2x-2=12(x-6) 2x-2=12x-72 70=10x x = 7 Fraction is x/2x +4=7/1
  • 2 answers

Chiranjiv Pegu 6 years, 7 months ago

Root 2

Chiranjiv Pegu 6 years, 7 months ago

Prove that the following numbers are irrational
  • 9 answers

Sanket Arjun 6 years, 7 months ago

२.६९३८७७५५१०

Sreya Sahoo 6 years, 7 months ago

2.69387755

Harshita Naagar 6 years, 7 months ago

Oo sorry ??

Vanshika Tyagi 6 years, 7 months ago

2.69387755102041

Ravenclaw_? Raunak_ 6 years, 7 months ago

Are iss question ka answer .....nikala hai maine

Harshita Naagar 6 years, 7 months ago

Ya ky ha 2.69......

Ravenclaw_? Raunak_ 6 years, 7 months ago

2.69..........

Harshita Naagar 6 years, 7 months ago

??

Ravenclaw_? Raunak_ 6 years, 7 months ago

Naam kya hai bhai tera ???
  • 7 answers

Vishakha Mehta 6 years, 7 months ago

1??

Sanket Arjun 6 years, 7 months ago

1

Sreya Sahoo 6 years, 7 months ago

1

Ravenclaw_? Raunak_ 6 years, 7 months ago

Kidding aren't you

Harshita Naagar 6 years, 7 months ago

1

Silent_Killer ? 6 years, 7 months ago

1

C. Chiranth Raju 6 years, 7 months ago

1
  • 2 answers

Harshita Naagar 6 years, 7 months ago

Ok

Harshita Naagar 6 years, 7 months ago

Let n=6q+5 , where q is a positive integer. We know that any positive integer is of the form 3k , 3k+1 , 3k+2. Now , if q=3k then, n=6(3k)+5=18q+5=18q+3+2 n=3(6q+1)+2 n=3m+2 where m=6q+1 Now, if q=(3k+1) n=6(3k+1)+5 n=18q+6+5 n=18q+9+2 n=3(6q+3)+2 n=3m+2 , where m=6q+3 Now , if q=3k+2 n=6(3k+2)+5 n=18q+12+5 n=3(6q+5)+2 n=3m+2 , where m=(6q+5) Therefore , if a positive integer is of the form 6q+5 then it is of the form 3q+2. Now let n=3q+2 , where q is a positive integer. We know that any positive integer is of the form 6q , 6q+2 , 6q+3 , 6q+4 , 6q+5 Now, if q=6q n=3q+2 n=3(6q)+2 n=18q+2 n=2(9q+1) n=2m Here clearly we can observe that 3q+2 is not in the form of 6q+5. Hence we can conclude that if a positive integer is of the form 6q+5 , then it is of the form 3q+2 but not conversely.
  • 2 answers

Surya.. Jatt??? 6 years, 7 months ago

May be

Surya.. Jatt??? 6 years, 7 months ago

Value of √2and√5in between any no.write
  • 1 answers

Sia ? 6 years, 7 months ago

Let the radius of 1st sphere be 'r1' and the radius of 2nd sphere be 'r2'

According to question,

Ratio of the volume of the given spheres is,

{tex}\frac { \text { Volume of } 1 ^ { \text { st } } \text { sphere } } { \text { Volume of } \Pi ^ { \text { nd } } \text { sphere } } = \frac { \frac { 4 } { 3 } \pi r _ { 1 } ^ { 3 } } { \frac { 4 } { 3 } \pi r _ { 2 } ^ { 3 } } = \frac { 8 } { 27 }{/tex}

{tex}\therefore \quad \quad \frac { r _ { 1 } ^ { 3 } } { r _ { 2 } ^ { 3 } } = \frac { 8 } { 27 }{/tex}

{tex} \frac { r _ { 1 } } { r _ { 2 } } = \frac { 2\sqrt2} { 3 }{/tex}

The ratio of the radius of the given spheres, r1 : r= 2{tex}\sqrt 2{/tex}:3

Now,

Ratio of the surface areas of the spheres {tex}= \frac { \text { Surface area of } 1 ^ { \text { st } } \text { sphere } } { \text { Surface area of } \Pi ^ { \text { nd } } \text { sphere } }{/tex}

{tex}\frac { 4 \pi r _ { 1 } ^ { 2 } } { 4 \pi r _ { 2 } ^ { 2 } } = \left( \frac { r _ { 1 } } { r _ { 2 } } \right) ^ { 2 }{/tex}

{tex}=\left( \frac { 2\sqrt2 } { 3 } \right) ^ { 2 } = \frac { 8 } { 9 }{/tex}

= 16 : 9

  • 1 answers

Sia ? 6 years, 7 months ago

You can check the topper's answer sheet in each chapter's category.

  • 0 answers
  • 1 answers

Vineeta 123456789 6 years, 7 months ago

So what can we do then
  • 1 answers

Abhay Rajput 6 years, 7 months ago

It is just adding of numbers
  • 2 answers

Anurag Singh 6 years, 7 months ago

Upper limit +lower limit ,and ➗ by 2

Anish Singh 6 years, 7 months ago

lower limit subtrated by upper limit, then divided by 2
  • 1 answers

Abhay Rajput 6 years, 7 months ago

If n=2 then (n+1) is divisible If n=3 then (n) is divisible If n=4 then (n+2) is divisible
  • 1 answers

Satish Satish 6 years, 7 months ago

In algebra the x term can continue
  • 1 answers

Sia ? 6 years, 7 months ago

We have,
9x2 - 3x - 2 = 0
{tex}\Rightarrow{/tex} 9x2 - 6x + 3x - 2 = 0
{tex}\Rightarrow{/tex} 3x(3x - 2) + 1(3x - 2) = 0
{tex}\Rightarrow{/tex} (3x - 2)(3x + 1) = 0
{tex}\Rightarrow{/tex} 3x - 2 = 0 or, 3x + 1 = 0 {tex}\Rightarrow \quad x = \frac { 2 } { 3 } \text { or, } x = - \frac { 1 } { 3 }{/tex}
Thus, {tex}x = \frac { 2 } { 3 } \text { and } x = - \frac { 1 } { 3 }{/tex} are the required roots of the given equation.

  • 0 answers
  • 2 answers
1 hr= 60 min Therefore 1 min = 1/60 hrs.... 10 min = 10/60 hrs = 1/6 hrs..... It implies 4 hr 10 min = 4 hr + 1/6 hr = 4+1/6 = (24+1)/6= 25/6= 4.1 hrs..

Dab Mastero 6 years, 7 months ago

4.1 hours
  • 1 answers

Sia ? 6 years, 7 months ago

On a graph paper, draw a horizontal line X'OX and a vertical line YOY' as the x-axis and the y-axis respectively.
Graph of {tex}4x - 5y - 20 = 0{/tex}
{tex}4x - 5y - 20 = 0 {/tex}

{tex}\Rightarrow{/tex} {tex}5y = (4x - 20){/tex}
{tex}\Rightarrow \quad y = \frac { ( 4 x - 20 ) } { 5 }{/tex}.....(i)
Table for {tex}4x - 5y - 20 = 0.{/tex}

x 0 2 5
y -4 -2.4 0

Now, plot the points {tex}A(0, -4),\ B(2, -2.4)\ and\ C(5, 0){/tex} on the graph paper.
Join AB and BC to get the graph line ABC. Extend it on both ways.
Thus, the line ABC is the graph of {tex}4x - 5y - 20 = 0.{/tex}
{tex}3x + 5y -15 = 0{/tex} {tex}\Rightarrow{/tex} {tex}5y = (15 -3x){/tex}
{tex}\Rightarrow \quad y = \frac { ( 15 - 3 x ) } { 5 }{/tex}.........(ii)
Table for {tex}3x + 5y -15 = 0.{/tex}

x -5 0 5
y 6 3 0

On the same graph paper as above, plot the points P (-5, 6) and Q(0, 3).
The third point C(5, 0) has already been plotted.
Join PQ and QC to get the graph line PQC. Extend it on both ways.

Thus, the line PQC is the graph of 3x + 5y -15 = 0.
The two graph lines intersect at the point C(5,0).
{tex}\therefore{/tex} x = 5, y = 0 is the solution of the given system of equations.
Clearly, the given equations are represented by the graph lines ABC and PQC respectively.
The vertices of {tex}\triangle{/tex}AQC formed by these lines and the y-axis are A(0, -4), Q(0,3) and C(5,0).

  • 1 answers

Sia ? 6 years, 7 months ago

<th scope="col">
less than 10 0 0-10 0 0
less than 30 10 10-30 10 10
less than 50 25 30-50 15 25
less than 70 43 50-70 18 43(F)
less than 90 65 70-90 22(f) 65
less than 110 87 90-110 22 87
less than 130 96 110-130 9 96
less than 150 100 130-150 4 100
      N=100  

We have
N=100
{tex}\therefore \quad \frac { N } { 2 } = \frac { 100 } { 2 } = 50{/tex}
The cumulative frequency just greater than {tex}\frac { N } { 2 }{/tex} is 65 then median class is 70 - 90 such that
l = 70, f = 22, F = 43, h = 90 - 70 =20
{tex}\therefore \quad \text { Median } = l + \frac { \frac { N } { 2 } - F } { f } \times h{/tex}
{tex}= 70 + \frac { 50 - 43 } { 22 } \times 20{/tex}
{tex}= 70 + \frac { 7 \times 20 } { 22 }{/tex}
=70 + 6.36
=76.36

  • 1 answers

Pallavi Singh 6 years, 7 months ago

420

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App