No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 3 answers

????? ?? 6 years, 7 months ago

(a+b)²=a²+b²+2ab

Kishu ❤ 6 years, 7 months ago

a2+b2+2ab.

Sia ? 6 years, 7 months ago

a2 + 2ab + b2
  • 1 answers

Ram Kushwah 6 years, 7 months ago

x-2y=6

Multiplying by 3 we get

3x-6y-18=0-------------(1)

3x-6y+0=0----------(2)

From (1) we get

3/3=-6/-6{tex}\neq{/tex}18/0

hence equation (1) and (20 have no solution

 

 

  • 0 answers
  • 1 answers

Sia ? 6 years, 7 months ago

Get identities in the notes : <a href="https://mycbseguide.com/cbse-revision-notes.html">https://mycbseguide.com/cbse-revision-notes.html</a>

  • 1 answers

Sia ? 6 years, 7 months ago

-241
  • 2 answers

Yogita Ingle 6 years, 7 months ago

According to Euclid’s Division Lemma if we have two positive integers a and b, then there exist unique integers q and r which satisfies the condition a = bq + r where 0 ≤ r ≤ b.

Sonam Singh 6 years, 7 months ago

Given positive integers a and b,their exist unique integers q and r satisfying a=bq+r, where 0 is equl to or smaller than r is smaller than b
  • 1 answers

Sia ? 6 years, 7 months ago

Given: In figure, {tex}\triangle {/tex} POS {tex} \sim {/tex} {tex}\triangle {/tex}ROQ

To prove: PS {tex}\parallel{/tex}QR
Proof: {tex}\triangle {/tex} POS {tex} \sim {/tex} {tex}\triangle {/tex}ROQ ........[Given]
{tex}\therefore {/tex}  {tex}\angle{/tex} PSO = {tex}\angle{/tex} RQO .........[ {tex}\because {/tex} corresponding angle of two similar triangles are equal]
But these form a pair of alternate angles
{tex}\therefore {/tex} PS {tex}\parallel{/tex}QR

  • 1 answers

Sia ? 6 years, 7 months ago

Let n be any positive integer. Applying Euclids division lemma with divisor = 5, we get
{tex}\style{font-family:Arial}{\begin{array}{l}n=5q+1,5q+2,5q+3\;and\;5q+4\;\\\end{array}}{/tex}
Now (5q)2 = 25q2 = 5m, where m = 5q2, which is an integer;
{tex}\style{font-family:Arial}{\begin{array}{l}(5q\;+\;1)^{\;2}\;=\;25q^2\;+\;10q\;+\;1\;=\;5(5q^2\;+\;2q)\;+\;1\;=\;5m\;+\;1\\where\;m\;=\;5q^2\;+\;2q,\;which\;is\;an\;integer;\\\;(5q\;+\;2)^2\;=\;25q^2\;+\;20q\;+\;4\;=\;5(5q^2\;+\;4q)\;+\;4\;=\;5m\;+\;4,\\\;where\;m\;=\;5q^2\;+\;4q,\;which\;is\;an\;integer;\\\;(5q\;+\;3)^{\;2}\;=\;25q^2\;+\;30q\;+\;9\;=\;5(5q^2\;+\;6q+\;1)\;+\;4\;=\;5m\;+\;4,\\\;where\;m\;=\;5q^2\;+\;6q\;+\;1,\;which\;is\;an\;integer;\\\;(5q\;+\;4)^2\;=\;25q^2\;+\;40q\;+\;16\;=\;5(5q^2\;+\;8q\;+\;3)\;+\;1\;=\;5m\;+\;1,\;\\where\;m\;=\;5q^2\;+\;8q\;+\;3,\;which\;is\;an\;integer\\\end{array}}{/tex}
Thus, the square of any positive integer is of the form 5m, 5m + 1 or 5m + 4 for some integer m.
It follows that the square of any positive integer cannot be of the form 5m + 2 or 5m + 3 for some integer m.

  • 1 answers

Yogita Ingle 6 years, 7 months ago

2x2 + x - 528= 0
2x2 + 33x - 32x - 528 = 0
x(2x + 33)- 16(2x+33)= 0
(x - 16)(2x + 33)
Zeros are x =  16 and x= -33/2

  • 0 answers
  • 2 answers

Sia ? 6 years, 7 months ago

Given equations are
{tex}\frac{x}{4}{/tex} + {tex}\frac{2y}{3} = 7{/tex}...............(i)
and {tex}\frac{x}{6}{/tex} + {tex}\frac{3y}{5} = 11{/tex} .................(ii)
From equation (i), we get
{tex}\frac{x}{4}{/tex} + {tex}\frac{2y}{3} = 7{/tex}
{tex}\Rightarrow{/tex} {tex}\frac{x}{4}{/tex} = 7 - {tex}\frac{2y}{3}{/tex}
{tex}\Rightarrow{/tex} {tex} x = 4(7 -\frac{2y}{3}){/tex}
{tex}\Rightarrow{/tex} x = 28 - {tex}\frac{8y}{3}{/tex}.................(iii)
substituting x = 28 - {tex}\frac{8y}{3}{/tex} in equation (ii), we get
{tex}\frac { 28 - \frac { 8 y } { 3 } } { 6 } + \frac { 3 y } { 5 } = 11{/tex}
 {tex}\Rightarrow{/tex} {tex}\frac { 84 - 8 y } { 18 } + \frac { 3 y } { 5 } = 11{/tex}
{tex}\Rightarrow{/tex} {tex}\frac{420 - 40y + 54y}{18 \times 5}{/tex} = 11
{tex}\Rightarrow{/tex} 420 + 14y = 990
{tex}\Rightarrow{/tex} 14y = 570
{tex}\Rightarrow{/tex} y = {tex}\frac{570}{14}{/tex} = {tex}\frac{285}{7}{/tex}
When y = {tex}\frac{285}{7}{/tex}, equation (iii) becomes
{tex}x = 28 - \frac { 8 \times \frac { 285 } { 7 } } { 3 }{/tex}
{tex}\Rightarrow{/tex} {tex} x = 28 -\frac{8 \times 285}{21}{/tex}
{tex}\Rightarrow{/tex}  {tex}x = \frac{588 - 2280}{21}{/tex} = {tex}\frac{-1692}{21}{/tex}
{tex}\Rightarrow{/tex}  -{tex}x =\frac{564}{7}{/tex}
{tex}\therefore{/tex} x = -{tex}\frac{564}{7}{/tex}, y = {tex}\frac{285}{7}{/tex} is the solution of given system of equations.

Shravan Kumar 6 years, 4 months ago

Sorry nahi samajh me aya . Pic
  • 1 answers

Sia ? 6 years, 7 months ago

The rational number for which the long division terminates after a finite number of steps is known as terminating decimal. Examples: The rational number for which the long division does not terminate after any number of steps is known as non-terminating decimal.

  • 1 answers

Sia ? 6 years, 7 months ago

We will prove this result by contradiction method.

Let assume that {tex}( 2 + \sqrt { 3 } ){/tex} be rational.
Then 2 and {tex}\sqrt { 3 }{/tex} are rational.
{tex}\Rightarrow 2 + \sqrt { 3 } - 2{/tex}  is rational ..... ({tex}\because{/tex} difference of two rational numbers is rational)
{tex}\Rightarrow \sqrt { 3 }{/tex} is rational
This contradicts the fact that {tex}\sqrt { 3 }{/tex} is irrational.
The Contradiction arises because we assume that {tex}( 2 + \sqrt { 3 } ){/tex} is rational.
Hence, {tex}2 + \sqrt { 3 }{/tex} is not a rational but an irrational number.

  • 1 answers

Shravan Kumar 6 years, 7 months ago

What
  • 3 answers

Sangam Rajput 6 years, 7 months ago

Second method X=3 Put the value of x in equation and get your abswer

Sangam Rajput 6 years, 7 months ago

I have two method to solve this question 1. If x = 3 So, x-3=0 X^2 + x +k=0 divided by x - 3 =0

Arman Sharma 6 years, 7 months ago

X^2+x+k=0 Put x=3 (3)^2+3+k=0 9+3+k=0 12+k=0 K=-12
  • 1 answers

Sia ? 6 years, 7 months ago

Let {tex}\alpha,\mathrm\beta\;\mathrm{and}\;\mathrm\gamma{/tex} be the zeroes of the given polynomial. 
Then, we have {tex}\alpha{/tex} = 2, {tex}\beta{/tex} = 1 and {tex}\gamma{/tex} = 1 
Hence
{tex}\alpha + \beta + \gamma{/tex} = 2 + 1 + 1 = 4    ...............(1)
{tex}\alpha \beta + \beta \gamma + \gamma \alpha{/tex} = 2(1) + 1(1) + 1(2) = 2 + 1 + 2 = 5    ................(2)
{tex}\alpha \beta \gamma{/tex} = 2(1)(1) = 2     .............(3)
Now, a cubic polynomial whose zeros are  {tex}\alpha , \beta{/tex} and {tex}\mathrm\gamma{/tex} is equal to
p(x) = x{tex}( \alpha + \beta + \gamma ) x ^ { 2 } + ( \alpha \beta + \beta y + \gamma \alpha ) x - \alpha \beta \gamma{/tex}
On substituting values from (1),(2) and (3) we get
{tex}\mathrm p(\mathrm x)=\mathrm x^3-(4)\mathrm x^2+(5)\mathrm x-(2){/tex}
= x3 - 4x2 + 5x - 2

  • 3 answers

Nishika Tomar 6 years, 7 months ago

The equation is wrong

Danish Raza 6 years, 7 months ago

Thnx

Manish Pandhyar 6 years, 7 months ago

The variable should be x in second equation
  • 0 answers
  • 1 answers

Yogita Ingle 6 years, 7 months ago

  7429 = 17 × 19 × 23

  • 1 answers

Sia ? 6 years, 7 months ago

According to Euclid’s Division Lemma if we have two positive integers a and b, then there exists unique integers q and r which satisfies the condition a = bq + r where 0 ≤ r ≤ b.
The basis of Euclidean division algorithm is Euclid’s division lemma. To calculate the Highest Common Factor (HCF) of two positive integers a and b we use Euclid’s division algorithm. HCF is the largest number which exactly divides two or more positive integers. By exactly we mean that on dividing both the integers a and b the remainder is zero.

  • 1 answers

Yogita Ingle 6 years, 7 months ago

Let us assume that √3 is a rational number
That is, we can find integers a and b (≠ 0) such that √3 = (a/b)
Suppose a and b have a common factor other than 1, then we can divide by the common factor, and assume that a and b are coprime.
√3b = a
⇒ 3b2=a2 (Squaring on both sides) → (1)
Therefore, a2 is divisible by 3
Hence ‘a’ is also divisible by 3.
So, we can write a = 3c for some integer c.
Equation (1) becomes,
3b2 =(3c)2
⇒ 3b2 = 9c2
∴ b2 = 3c2
This means that b2 is divisible by 3, and so b is also divisible by 3.
Therefore, a and b have at least 3 as a common factor.
But this contradicts the fact that a and b are coprime.
This contradiction has arisen because of our incorrect assumption that √3 is rational.
So, we conclude that √3 is irrational.

  • 1 answers

Yogita Ingle 6 years, 7 months ago

let √5 be rational
then it must in the form of p/q [q is not equal to 0][p and q are co-prime]
√5=p/q
=> √5 × q = p
squaring on both sides
=> 5×q×q = p×p  ----- 1
p×p is divisible by 5
p is divisible by 5
p = 5c  [c is a positive integer] [squaring on both sides ]
p×p = 25c×c  ---------  2
sub p×p in 1
5×q×q = 25×c×c
q×q = 5×c×c
=> q is divisible by 5
thus q and p have a common factor 5
there is a contradiction
as our assumtion p &q are co prime but it has a common factor
so √5 is an irrational

  • 1 answers

Nishika Tomar 6 years, 7 months ago

Mean=fixi/fi
  • 1 answers

Surya Pratap 6 years, 7 months ago

6+3√2
  • 1 answers

Sia ? 6 years, 6 months ago

LHS= {tex}\sin \left( 50 ^ { \circ } + \theta \right) - \cos \left( 40 ^ { \circ } - \theta \right) + \tan 1 ^ { \circ } \tan 10 ^ { \circ } \tan 20 ^ { \circ } \tan 70 ^ { \circ }{/tex}{tex}\tan 80 ^ { \circ } \tan 89 ^ { \circ }{/tex}
{tex}= \sin \left[ 90 ^ { \circ } - \left( 40 ^ { \circ } - \theta \right) ] - \cos \left( 40 ^ { \circ } - \theta \right) + \tan 1 ^ { \circ } \tan 10 ^ { \circ } \tan 20 ^ { \circ }\right. \tan \left( 90 ^ { \circ } - 20 ^ { \circ } \right) \tan \left( 90 ^ { \circ } - 10 ^ { \circ } \right) \tan \left( 90 ^ { \circ } - 1 ^ { \circ } \right){/tex}
{tex}= \cos \left( 40 ^ { \circ } - \theta \right) - \cos \left( 40 ^ { \circ } - \theta \right) + \tan 1 ^ { \circ } \tan 10 ^ { \circ }\tan 20 ^ { \circ } \cot 20 ^ { \circ } \cot 10 ^ { \circ } \cot 1 ^ { \circ }{/tex}
{tex}= 0 + 1\\ = 1\\= RHS{/tex}

  • 1 answers

Sia ? 6 years, 6 months ago

 We have to prove that :- 

{tex} \Rightarrow {\sec ^6}\theta = {\tan ^6}\theta +3{\tan ^2}\theta {\sec ^2}\theta + 1{/tex}

{tex} \Rightarrow {\sec ^6}\theta - {\tan ^6}\theta = 3{\tan ^2}\theta {\sec ^2}\theta + 1{/tex}


Now, LHS

 {tex} = {\sec ^6}\theta - {\tan ^6}\theta {/tex}
{tex} = {\left( {{{\sec }^2}\theta } \right)^3} - {({\tan ^2}\theta )^3}{/tex}

{tex}= \left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right)\left[ {{{({{\sec }^2}\theta )}^2} + {{\sec }^2}\theta {{\tan }^2}\theta + {{({{\tan }^2}\theta )}^2}} \right]{/tex}{Since, a3 - b3 = (a - b )(a2 - ab + b)}
{tex} = 1\left[ {{{\sec }^4}\theta + {{\sec }^2}\theta {{\tan }^2}\theta + {{\tan }^4}\theta } \right]{/tex} {tex}\left[ {\because {{\sec }^2}\theta - {{\tan }^2}\theta = 1} \right]{/tex}
{tex} = {\sec ^4}\theta + {\tan ^4}\theta + {\sec ^2}\theta {\tan ^2}\theta {/tex}
{tex} = {({\sec ^2}\theta )^2} + {({\tan ^2}\theta )^2} + {\sec ^2}\theta {\tan ^2}\theta {/tex}
Adding and subtracting {tex}2{\sec ^2}\theta {\tan ^2}\theta {/tex}
{tex} = {({\sec ^2}\theta )^2} + {({\tan ^2}\theta )^2} - 2{\sec ^2}\theta {\tan ^2}\theta + 2{\sec ^2}\theta {\tan^2}\theta+ {\sec ^2}\theta {\tan ^2}\theta {/tex}
{tex} = {({\sec ^2}\theta - {\tan ^2}\theta )^2} + 3{\sec ^2}\theta {\tan ^2}\theta {/tex} {tex}\left[ {\because {{(a - b)}^2} = {a^2} + {b^2} - 2ab} \right]{/tex}
{tex} = 1 + 3{\sec ^2}\theta {\tan ^2}\theta {/tex} {tex}\left[ {\because {{\sec }^2}\theta - {{\tan }^2}\theta = 1} \right]{/tex}
= RHS
Hence proved

  • 0 answers
  • 3 answers
They are important only if asked in the question...if not then writing them is a waste of time...but if let's say it's asked to write the steps of construction and you don't do so...then you will definitely loose your marks...

Sia ? 6 years, 7 months ago

Yes it is necessary. But don't waste time for learning the words for the steps just write in our own words because there is rarely any teacher who will read the steps they will directly see the construction but if you don't write it then you will surely lose 1 or 1.5 marks.

Silent_Killer ? 6 years, 7 months ago

Yes ...sometimes. But justification is must

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App