No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Yogita Ingle 6 years, 7 months ago

let 'x' be the number

Then,according to the question

x + x² = (63/4)

4x²+ 4x -63 = 0

Using splitting the middle term,

4x² + 18x - 14x -63 = 0

2x(2x-9) - 7(2x-9) = 0

(2x - 7)(2x - 9) = 0

⇒ x = (7/2) or (9/2)

x = (7/2) satisfy the condition given in the question

so, x =(7/2) is the number

 

? ? ? 6 years, 7 months ago

Solve it like x +x^2=63/4 where x is the no.
  • 1 answers

Sia ? 6 years, 7 months ago

{tex}x^2 + 6x - 16 = 0{/tex}
{tex}\Rightarrow{/tex} {tex}x^2 + 6x = 16{/tex}
{tex}\Rightarrow{/tex} {tex}x^2 + 6x + 9 = 16 + 9{/tex} [Adding on both sides square of coefficient of x, i.e. ({tex}\frac{6}{2}{/tex})2]
{tex}\Rightarrow{/tex} {tex}(x + 3)^2 = 25{/tex}
{tex}\Rightarrow{/tex} x + 3 = {tex}\pm{/tex}{tex}\sqrt{25}{/tex}
{tex}\Rightarrow{/tex} x + 3  =5 or x + 3 = -5
{tex}\Rightarrow{/tex} x = 2 or x = -8

  • 2 answers

Sahil Chaubey 6 years, 7 months ago

Where is eq^n

Gungun ? 6 years, 7 months ago

Where is the equation??
  • 1 answers

Sia ? 6 years, 7 months ago

Get NCERT solutions here : <a href="https://mycbseguide.com/ncert-solutions.html">https://mycbseguide.com/ncert-solutions.html</a>

  • 2 answers

? ? ? 6 years, 7 months ago

Use dist. Formula and find all 3 distances then add all the dist. To get perimeter

? ? ? 6 years, 7 months ago

Add all the distances by using the formula √(x2 -x1 )^2 +(y2-y1)^2
  • 1 answers

Sia ? 6 years, 7 months ago

Given : cos{tex}\theta{/tex} + sin{tex}\theta{/tex}= p ....(i)

 sec{tex}\theta{/tex} + cosec{tex}\theta{/tex} = q....(ii)
L.H.S = q(p2- 1)
= (sec{tex}\theta{/tex} + cosec{tex}\theta{/tex}) [(cos{tex}\theta{/tex} + sin{tex}\theta{/tex})2 - 1]
= (sec{tex}\theta{/tex} + cosec{tex}\theta{/tex}) (cos2{tex}\theta{/tex} + sin2{tex}\theta{/tex} + 2 sin{tex}\theta{/tex} cos{tex}\theta{/tex} - 1) {tex}[\because (a+b)^2=a^2+b^2+2ab]{/tex}
{tex}= \left( \frac { 1 } { \cos \theta } + \frac { 1 } { \sin \theta } \right) ( 2 \sin \theta \cos \theta ){/tex} {tex}[\because sin^2\theta+cos^2\theta=1]{/tex}
{tex}= 2sin\theta cos\theta. \frac{1}{cos\theta}+2sin\theta cos\theta.\frac{1}{sin\theta}{/tex}
{tex}2sin\theta+2cos\theta{/tex}
= {tex}2(sin\theta+cos\theta){/tex}
= {tex}2p{/tex}   ......( using eq.i )
= R.H.S.
Hence Proved.

  • 1 answers

Suhani Rathore 6 years, 7 months ago

A+b =24 A=24-b Sbstitute the value in the second equation. A-b=8 24-b-b = 8 24-2b =8 24-8=2b 16=2b 16/2=b 8= b Now, substitute this value of b in any equation, which one uh like A+b=24 A+8=24 A=24-8 A=16 That is the answers a=16 and b =8
  • 1 answers

Sia ? 6 years, 7 months ago

Let O be the common centre of the two circles
and AB be the chord of the larger circle which touches the smaller circle at C.
Join OA and OC.
Then, OA = a and OC = b.
Now, {tex} \mathrm { OC } \perp A B{/tex} and OC bisects AB [{tex}\because{/tex} the chord of the larger circle touching the smaller circle, is bisected at the point of contact].
In right {tex}\triangle A C O{/tex}, we have
OA2 = OC2+AC2 [by Pythagoras' theorem]
{tex}\Rightarrow{/tex}AC = {tex}\sqrt { O A ^ { 2 } - O C ^ { 2 } } = \sqrt { a ^ { 2 } - b ^ { 2 } }{/tex}.
{tex}\therefore{/tex} AB = 2AC = {tex}2 \sqrt { a ^ { 2 } - b ^ { 2 } }{/tex} {tex}[ \because \text { C is the midpoint of } A B ]{/tex}
i.e, required length of the chord AB = {tex}2 \sqrt { a ^ { 2 } - b ^ { 2 } }{/tex}

  • 3 answers

Rekha Garg 6 years, 7 months ago

Thanks

Yogita Ingle 6 years, 7 months ago

Zero of the polynomial is -4

p(x) =x² - x - (2k +  2)

p(x) = x²-x-2k-2

p(-4)=0

0=-4²-(-4)-2k-2

0=16+4-2k-2

0=18-2k

2k=18

k=18/2=9

Rekha Garg 6 years, 7 months ago

k=9
  • 1 answers

Ayush Yadav 6 years, 7 months ago

Firt assume 2+3√5 is rational So 2+3√5=p/q (where p andq are co-prime) 2+3√5=p/q 3√5=p/q-2 3√5=5/q-2q/q √5=15/q-6q/q But this contradicts the fact √5 is irrational. 2+3√5 is rational Hence proved.
  • 2 answers

Sandeep Hello 6 years, 6 months ago

Pagal

Sia ? 6 years, 7 months ago

Let A(-2, 0) and B(6, 0) be the given points.
Let P(x, 0) be the point on x -axis such that PA = PB
PA = PB
PA2 = PB2
(x + 2)2 + (0 - 0)2 = (x - 6)2 + (0 - 0)2
{tex}\Rightarrow{/tex} x2 + 4 + 4x = x2 + 36 - 12x
{tex}\Rightarrow{/tex} 16x = 32
{tex}\Rightarrow{/tex} x = 2
{tex}\therefore{/tex} The point on x-axis is (2, 0).

  • 2 answers

Diya ..... 6 years, 7 months ago

An algebraic expression in which power of each term is a whole no. is called polynomial. Ex- x²+5x+2, x³+3 etc.

Sia ? 6 years, 7 months ago

An expression of more than two algebraic terms, especially the sum of several terms that contain different powers of the same variable(s).

  • 2 answers

Manish Kumar 6 years, 7 months ago

Value of k is 3

Sia ? 6 years, 7 months ago

The given pair of linear equations is
x + 3y - 5 = 0
3x + ky - 15 = 0
{tex}\Rightarrow{/tex} x + 2y - 5= 0
Here, a1 = 1, b1 = 3, c1 = -5
a2 = 3, b2 = k, c2 = -15

For having a unique solution, we must have
{tex}\frac { a _ { 1 } } { a _ { 2 } } \neq \frac { b _ { 1 } } { b _ { 2 } }{/tex}
{tex}\Rightarrow \quad \frac { 1 } { 3 } \neq \frac { 3 } { k } \Rightarrow k \neq 9{/tex}

  • 1 answers

Sia ? 6 years, 7 months ago

{tex}\frac{1}{2a + b + 2x}{/tex} = {tex}\frac{1}{2a}{/tex} + {tex}\frac{1}{b}{/tex} + {tex}\frac{1}{2x}{/tex} 

{tex}\Rightarrow{/tex} {tex}\frac{1}{2a + b + 2x}{/tex} - {tex}\frac{1}{2x}{/tex} = {tex}\frac{1}{2a}{/tex} + {tex}\frac{1}{b}{/tex} 
{tex}\Rightarrow{/tex}{tex}\frac { 2 x - 2 a - b - 2 x } { ( 2 a + b + 2 x ) ( 2 x ) }{/tex} = {tex}\frac{b + 2a}{2a \times b}{/tex} 

{tex}\Rightarrow{/tex} {tex}\frac { - ( 2 a + b ) } { ( 2 a + b + 2 x ) 2 x }{/tex} = {tex}\frac{b + 2a}{2ab}{/tex}
{tex}\Rightarrow{/tex}{tex}\frac { - 1 } { 4 a x + 2 b x + 4 x ^ { 2 } }{/tex} = {tex}\frac{1}{2ab}{/tex} 

{tex}\Rightarrow{/tex} {tex}4x^2 + 2bx + 4ax  = -2ab{/tex}
{tex}\Rightarrow{/tex} {tex}4x^2 + 2bx + 4ax + 2ab = 0{/tex} 

{tex}\Rightarrow{/tex} {tex}2x(2x + b) + 2a(2x + b) = 0{/tex}
{tex}\Rightarrow{/tex} (2x + b)(2x  + 2a) = 0

{tex}\Rightarrow{/tex} x = -{tex}\frac{b}{2}{/tex} or x = -a

  • 2 answers

Yogita Ingle 6 years, 7 months ago

Given points are (1,7),(4,2),(-1,-1),(-4,4)
Let the points are A,B,C,D.
Distance formula = √(x₂-x₁)²+(y₂-y₁)²
 AB = √(4-1)²+(2-7)²
  = √9+25
 = √34
 BC = √(-1-4)²+(-1-2)²
 = √25+9
 =  √34
 CD = √(-4-(-1))²+(4-(-1))²
 = √9+25
  =  √34
 DA = √(1-(-4))²+(7-4)²
  = √25+9
 = √34
We know that the all sides of the square are equal.
Here by the distance formula, we got the for sides equal .
So,from this we can say that these points are the vertices of a square.

 

Shashi Kumar 6 years, 7 months ago

What is polynomial
  • 2 answers

Yogita Ingle 6 years, 7 months ago

<div>The given equations are as follows: 6x + 3y = 7xy ………….(i)
3x + 9y = 11xy …………(ii)
For equation (i), we have: 6x+3y/ xy = 7
</div>

Sia ? 6 years, 7 months ago

On dividing each of the given equations by xy, we get
{tex}\frac { 6 } { y } + \frac { 3 } { x } = 7{/tex}.......(i)
{tex}\frac { 3 } { y } + \frac { 9 } { x } = 11{/tex}.....(ii)
Putting {tex}\frac 1x{/tex} = u and {tex}\frac 1y{/tex} = v in (i) and (ii), we get
{tex}6v + 3u = 7{/tex}..... (iii)
{tex}3v + 9u = 11{/tex}.. ..(iv)
Multiplying (iii) by 3 and subtracting (iv) from the result, we get
{tex}18v - 3v = 21 - 11{/tex}
{tex}\Rightarrow{/tex} {tex}15v = 10{/tex}
{tex}\Rightarrow \quad v = \frac { 10 } { 15 } = \frac { 2 } { 3 }{/tex}
Putting v = {tex}\frac 23{/tex} in (iii), we get
{tex}\left( 6 \times \frac { 2 } { 3 } \right) + 3 u = 7{/tex}{tex}\Rightarrow 4 + 3 u = 7 \Rightarrow 3 u = 3 \Rightarrow u = 1{/tex}
{tex}u = 1{/tex} {tex}\Rightarrow \frac { 1 } { x } = 1 \Rightarrow x = 1{/tex}
{tex}v = \frac { 2 } { 3 } \Rightarrow \frac { 1 } { y } = \frac { 2 } { 3 }{/tex}{tex}\Rightarrow 2 y = 3 \Rightarrow y = \frac { 3 } { 2 }{/tex}
{tex}\therefore{/tex}  {tex}x = 1\ and\ y = {/tex}{tex}\frac 32{/tex}

  • 1 answers

Sia ? 6 years, 7 months ago

Given,
am+1 = 2an+1
{tex}\Rightarrow{/tex} a + (m + 1 - 1)d = 2[a + (n + 1 - 1)d]
{tex}\Rightarrow{/tex} a + md = 2[a + nd]
{tex}\Rightarrow{/tex} a + md = 2a + 2nd
{tex}\Rightarrow{/tex} md - 2nd = 2a - a
{tex}\Rightarrow{/tex} md - 2nd = a ..........(i)
To prove:
a3m+1 = 2am+n+1
Proof:
LHS
= a3m+1
= a + (3m + 1 - 1)d
= a + 3md
= md - 2nd + 3md [From (i)]
= 4md - 2nd
RHS
= 2am+n+1
= 2[a + (m + n + 1 -1)d]
= 2[a + md - nd]
= 2[md - 2nd + md + nd] [From (i)]
= 2[2md - nd]
= 4md - 2nd
Hence, LHS = RHS

  • 1 answers

Sanket Arjun 6 years, 7 months ago

3x^-3x+8x-8 3x(x-1)+8(x-1) (3x+8)(x-1) X=-8/3 or x=1
  • 7 answers

King Of The Kings ???? 6 years, 7 months ago

1/6

Nikhil More 6 years, 7 months ago

1/6

Princess ? Riya 6 years, 7 months ago

1/6

Soumya Bhattar 6 years, 7 months ago

1/6

Harsh Srivastava 6 years, 7 months ago

1/6

Rani Bijhekar 6 years, 7 months ago

4

Rohit Guha Roy 6 years, 7 months ago

1/6
  • 1 answers

Sia ? 6 years, 7 months ago

The frustum of a pyramid or truncated pyramid is the result of cutting a pyramid by a plane parallel to the base and separating the part containing the apex. The height of the pyramidal frustum is the perpendicular distance between the bases. The apothem is the height of any of its sides.

  • 1 answers

Sia ? 6 years, 7 months ago

Let height of each candle = {tex}x\ unit.{/tex}
First candle burns off in 6 hours.
Second candle burns off in 8 hours.
Height of 1st candle after burning for 1 hr = {tex}\frac{x}{6}{/tex}{tex}unit{/tex}
and height of 2nd candle after burning for 1 hr = {tex}\frac{x}{8}{/tex}{tex}unit{/tex}
Let the required time {tex}= y\ hrs{/tex}.
Length of 1st candle burnt after y hrs = {tex}\frac{y \times x}{6}{/tex}{tex}unit{/tex}
Height of 1st candle left = {tex}\left(x-\frac{x y}{6}\right){/tex}
Length of 2nd candle burnt after y hrs = {tex}\left(\frac{y \times x}{8}\right){/tex}{tex}unit{/tex}
Height of 2nd candle left = {tex}\left(x-\frac{x y}{8}\right){/tex}
According to the question,
Height of 1st candle = {tex}\frac{1}{2} \times{/tex}Height of 2nd candle
{tex}\Rightarrow \quad x-\frac{x y}{6}=\frac{1}{2}\left(x-\frac{x y}{8}\right){/tex}
{tex}\Rightarrow \quad x\left(1-\frac{y}{6}\right)=\frac{1}{2} x\left(1-\frac{y}{8}\right){/tex}
{tex}1-\frac{y}{6}=\frac{1}{2}\left(1-\frac{y}{8}\right){/tex}
{tex}\Rightarrow \quad 2-\frac{y}{3}=1-\frac{y}{8}{/tex}
{tex}2 -1 ={/tex} {tex}\frac{y}{3}-\frac{y}{8}{/tex}
1 = {tex}\frac{8 y-3 y}{24}{/tex}
{tex}\Rightarrow{/tex} {tex}24 = 5y{/tex}
{tex}\Rightarrow{/tex} {tex}y ={/tex} {tex}\frac{24}{5}{/tex}
{tex}y = 4.8 hours = 4\ hours\ 48\ minutes.{/tex}

  • 3 answers

Sahil Chaubey 6 years, 7 months ago

If D>0 then roots are real and equal

Sia ? 6 years, 7 months ago

Which Quadratic Equation?

__Richa Tiwari 6 years, 7 months ago

D>0 real no
  • 2 answers

Priyam Singh 6 years, 7 months ago

X=32/9 and y=71/9

Sameer Sameer 6 years, 7 months ago

Here x=32/9 and y=70/9
  • 6 answers

King Of The Kings ???? 6 years, 7 months ago

0

__Richa Tiwari 6 years, 7 months ago

0

Priyam Singh 6 years, 7 months ago

Not defined....

Honey ??? 6 years, 7 months ago

oo

Sameer Sameer 6 years, 7 months ago

Infinity

Sia ? 6 years, 7 months ago

Not defined

  • 1 answers

Sia ? 6 years, 7 months ago

Let AC be the electric pole of height 4 m. Let B be a point 1.3 m below the top A of the pole AC.

Then {tex}BC=AC-AB=4-1.7=2.3 m{/tex}
Here BD is the ladder and
{tex}\angle BDC{/tex} = 60o
In {tex}\triangle{/tex}BCD, we have
{tex}\frac{BD}{BC} =cosec60=\frac{2}{√3}{/tex}
BD = BC {tex}\times{/tex} {tex}2\over √3{/tex}
= 2.7 {tex}\times{/tex} {tex}\frac{2}{1.73} = 3.12 m{/tex}
Hence length of ladder = 3.12 meter

  • 2 answers

Mamta Jha 6 years, 7 months ago

Sorry this question is wrong

Anurag Singh?? 6 years, 7 months ago

Question Samajh me nhi aaya
  • 6 answers

Tushar Lakhchaura 6 years, 6 months ago

NO , because when we add any odd and even number it is not possible that answer will even number so, 3+2 is not 6

King Of The Kings ???? 6 years, 7 months ago

3+2=5 is not equal to 6

King Of The Kings ???? 6 years, 7 months ago

Because 3+2=5

Saurabh Chitte 6 years, 7 months ago

Because if we add 3 and 2 it will give us answer as 5 it's common if we take the product of these two number so it will give us answer 6

Shivansh Handa 6 years, 7 months ago

Because3+2=5

Anurag Singh?? 6 years, 7 months ago

Because 2+2=4

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App