Ask questions which are clear, concise and easy to understand.
Ask QuestionPosted by King Of The Kings ???? 6 years, 7 months ago
- 1 answers
Posted by Bismita Saikia 6 years, 7 months ago
- 1 answers
Posted by Harprit Kaur 6 years, 7 months ago
- 1 answers
Sia ? 6 years, 7 months ago
You can check the marks distribution here : <a href="https://mycbseguide.com/cbse-syllabus.html">https://mycbseguide.com/cbse-syllabus.html</a>
Posted by Himanshu Yadav 6 years, 7 months ago
- 1 answers
Sia ? 6 years, 7 months ago
Given,
{tex}\frac { 1 } { ( a + b + c ) } = \frac { 1 } { a } + \frac { 1 } { b } + \frac { 1 } { c }{/tex}
{tex}\Rightarrow \quad \frac { 1 } { ( a + b + c ) } - \frac { 1 } { c } = \frac { 1 } { a } + \frac { 1 } { b } \Rightarrow \frac { c - ( a + b + c ) } { c ( a + b + c ) } = \frac { b + a } { a b }{/tex}
{tex}\Rightarrow \quad \frac { - ( a + b ) } { c ( a + b + c ) } = \frac { ( a + b ) } { a b }{/tex}
On dividing both sides by (a+b)
{tex}\Rightarrow \quad \frac { - 1 } { c ( a + b + c ) } = \frac { 1 } { a b }{/tex}
Now cross multiply
{tex}\Rightarrow{/tex} c(a + b + c) = -ab
{tex}\Rightarrow{/tex} c2 + ac + bc + ab = 0
{tex}\Rightarrow{/tex} c(c +a) + b(c +a) = 0
{tex}\Rightarrow{/tex} (c + a) (c + b) = 0
{tex}\Rightarrow{/tex} c + a = 0 or c + b = 0
{tex}\Rightarrow{/tex} c = -a or c = -b.
Therefore, -a and -b are the roots of the equation.
Posted by Himanshi Gupta 6 years, 7 months ago
- 1 answers
Yogita Ingle 6 years, 7 months ago
HCF of 234 and 111
234 = 2 x 3 x 3 x 13
111 = 3 x 37
Therefore, HCF = 3
So we can write it
3 = 111 - (12 x 9)
3 = 111 - {(234 – 111 x 2) x 9}[where 12 = 234 - 111 x 2]
3 = 111 - {234 x 9 – 222 x 2 x 9}
3 = 111 - (234 x 9) + (111 x 18)
3 = 111 + (111 x 18) - (234 x 9)
3 = 111[1 + 18] – 234 x 9
3 = 111 x 19 – 234 x 9
3 = 234 x (-9) + 222 x 19
Hence, HCF of 234 and 111 in the form of
234x + 111y is 234 x (-9) + 111 x 19
Posted by Sonam Singh 6 years, 7 months ago
- 2 answers
Yogita Ingle 6 years, 7 months ago
Given,
ax + by = a - b .......1
bx - ay = a + b .......2
Multiply by a in equation 1 and b in equation 2, we get
a2 x + aby = a2 - ab .......3
b2 x - aby = ab + b2 .......4
Add equation 3 and 4, we get
a2 x + aby + b2 x - aby = a2 - ab + ab + b2
=> a2 x + b2 x = a2 + b2
=> x(a2 + b2 ) = a2 + b2
=> x = (a2 + b2 )/(a2 + b2 )
=> x = 1
Put value of x in equation 1, we get
=> a + by = a - b
=> by = a - b - a
=> by = -b
=> y = -b/b
=> y = -1
So, x = 1, y = -1
Posted by Suraj Nayak 6 years, 7 months ago
- 1 answers
Sia ? 6 years, 7 months ago
We have,
tan 5° tan 25° tan 30° tan 65° tan 85°
= (tan 5° tan 85°) (tan 25° tan 65°) tan 30° {tex}\left[ \begin{array} { c } { \because \tan 85 ^ { \circ } = \tan \left( 90 ^ { \circ } - 5 ^ { \circ } \right) = \cot 5 ^ { \circ } } \\ { \tan 65 ^ { \circ } = \tan \left( 90 ^ { \circ } - 25 ^ { \circ } \right) = \cot 25 ^ { \circ } } \end{array} \right] {/tex}
= (tan 5° cot 5°) (tan 25° cot 25°) tan 30°
={tex}\left(tan5^\circ\times\frac1{\tan5^\circ}\right)\left(tan25^\circ\times\frac1{\tan25^\circ}\right){/tex} {tex}\left[cot\theta=\frac1{\tan\theta}\right]{/tex}
{tex}= 1 \times 1 \times \frac { 1 } { \sqrt { 3 } } = \frac { 1 } { \sqrt { 3 } } {/tex}
Posted by Karnal Meena 6 years, 7 months ago
- 1 answers
Sia ? 6 years, 7 months ago
We have,
f(x) = abx2 + (b2 - ac)x - bc
= abx2 + b2x - acx - bc
= bx(ax + b ) - c(ax + b)
= (ax + b) (bx - c)
Now r(x)=0 if
ax+b=0 or bx-c=0
{tex}\style{font-family:Arial}{\begin{array}{l}\style{font-size:12px}{\mathrm i}\style{font-size:12px}.\style{font-size:12px}{\mathrm e}\style{font-size:12px}.\style{font-size:12px}\;\style{font-size:12px}{\mathrm x}\style{font-size:12px}=\style{font-size:12px}-\frac{\style{font-size:12px}{\mathrm b}}{\style{font-size:12px}{\mathrm a}}\style{font-size:12px}\;\style{font-size:12px}{\mathrm{or}}\style{font-size:12px}\;\style{font-size:12px}{\mathrm x}\style{font-size:12px}=\frac{\style{font-size:12px}{\mathrm c}}{\style{font-size:12px}{\mathrm b}}\\\end{array}}{/tex}
Thus, the zeroes of f(x) are :
{tex}\style{font-family:Arial}{\style{font-size:12px}{\mathrm\alpha}\style{font-size:12px}=\style{font-size:12px}-\frac{\style{font-size:12px}{\mathrm b}}{\style{font-size:12px}{\mathrm a}}\style{font-size:12px}\;\style{font-size:12px}{\mathrm{and}}\style{font-size:12px}\;\style{font-size:12px}{\mathrm\beta}\style{font-size:12px}=\frac{\style{font-size:12px}{\mathrm c}}{\style{font-size:12px}{\mathrm b}}}{/tex}
{tex}\text{α+β=-}\frac{\mathrm b}{\mathrm a}\;+\frac{\mathrm c}{\mathrm b}=\frac{-\mathrm b^2+ac}{ab}=-\frac{\mathrm( b^2-ac)}{ab}--(1){/tex}
{tex}\text{αβ=}\frac{\mathrm b}{\mathrm a}\;\times-\frac{\mathrm c}{\mathrm b}=-\frac{\mathrm c}{\mathrm a}----(2){/tex}
Now for f(x) = abx2 + (b2 - ac)x - bc
A = ab , B= b2 - ac, C = -b
{tex}-\frac BA=-\frac{b^2-ac}{ab}--(3){/tex}
{tex}\frac CA=\frac{-bc}{ab}=-\frac ca----(4){/tex}
From (1) & (3) and (2) & (4) we conclude:
{tex}\begin{array}{l}\text{α+β=-}\frac{\mathrm B}{\mathrm A}\\\end{array}{/tex}
{tex}\begin{array}{l}\text{αβ=}\frac C{\mathrm A}\\\end{array}{/tex}
Posted by Akarshi Srivastava 6 years, 7 months ago
- 1 answers
Sia ? 6 years, 7 months ago
Let {tex}\alpha,\beta{/tex} be the zeros of the polynomial {tex}f(x)=x^2-8x+k{/tex}.
Sum of zeroes = {tex} \alpha + \beta = - \left( \frac { - 8 } { 1 } \right) = 8{/tex} and, Product of zeroes = {tex} \alpha \beta = \frac { k } { 1 } = k{/tex}
Now,
{tex} \alpha ^ { 2 } + \beta ^ { 2 } = 40{/tex}
{tex} \Rightarrow \alpha ^ { 2 } + \beta ^ { 2 }+2 \alpha\beta-2 \alpha\beta= 40{/tex}
{tex} \Rightarrow \quad ( \alpha + \beta ) ^ { 2 } - 2 \alpha \beta = 40{/tex}
{tex} \Rightarrow \quad 8 ^ { 2 } - 2 k = 40{/tex}
{tex} \Rightarrow \quad 2 k = 64 - 40 {/tex}
{tex}\Rightarrow 2 k = 24 {/tex}
{tex}\Rightarrow k = 12{/tex}
Posted by Namita Dubey 6 years, 7 months ago
- 1 answers
Sia ? 6 years, 7 months ago
First find the HCF of 575 and 225 by Using Euclid's division algorithm,
575 = 225{tex}\times{/tex} 2 + 125
225 = 125{tex}\times{/tex} 1 + 100
125 = 100{tex}\times{/tex} 1 + 25
100 = 25 {tex}\times{/tex}4 + 0
So, HCF of 575 and 225 = 25
Posted by Raghu Sharma Raghu Sharma 6 years, 7 months ago
- 1 answers
Posted by Anupriya Rawat 6 years, 7 months ago
- 1 answers
Sia ? 6 years, 7 months ago
Let speed of the train be x km/hr and speed of the car be y km/hr
Total distance = 600 Km
In first case, he travelled 320 km by train and rest i.e. 600 -320 =280 Km by Car.
In 2nd case, he travelled 200 Km by train and rest i.e. 400 Km by Car.
Using formula ; {tex}time=\frac{distance}{speed}{/tex} & according to question,
{tex}\frac{320}{x}+\frac{280}{y}=\frac{26}{3}{/tex} ..(i) (first case, here time = 8hr 40 minutes= 26/3 hrs)
{tex}\frac{200}{x}+\frac{400}{y}=\frac{55}{6}{/tex} ..(ii) (2nd case, here time = 30 minutes i.e. 1/2 hrs greater than that of 1st case)
multiplying eq. (i) by 5 and eq. (ii) by 8, we get
{tex}\frac{1600}{x}+\frac{1400}{y}=\frac{130}{3}{/tex} ..(iii)
{tex}\frac{1600}{x}+\frac{3200}{y}=\frac{220}{3}{/tex} ..(iv)
subtracting (iii) by (iv), we get
{tex}\frac{-1800}{y}=\frac{-90}{3}{/tex}
y = {tex}\frac{1800 \times 3}{90}{/tex}
y = 60 km/hr
Putting y = 60 in eq. (i), we get
{tex}\frac{320}{x}+\frac{280}{60}=\frac{26}{3}{/tex}
{tex}\frac{320}{x}=\frac{26}{3}-\frac{14}{3}{/tex}
{tex}\frac{320}{x}=\frac{12}{3}{/tex}
x = {tex}\frac{320 \times 3}{12}{/tex}
x = 80 km/hr
Hence, speed of the train = 80 Km/hr
speed of the car = 60 Km/hr
Posted by Sahil Ali 6 years, 7 months ago
- 1 answers
Posted by Meghna Unni 6 years, 7 months ago
- 1 answers
Sia ? 6 years, 7 months ago
{tex}2^{\mathrm n}\times5^{\mathrm n}{/tex}
{tex}\text{=10}^n{/tex}
{tex}\text{If n=0 then 10}^0\text{=1}{/tex}
{tex}\text{If n>0 then 10}^n\text{ will end with 0 }{/tex}
{tex}\mathrm{If}\;\mathrm n<0\;\mathrm{then}\;10^{\mathrm n}\;\mathrm{ends}\;\mathrm{with}1\;(\mathrm e.\mathrm g.\;0.1,0.01,0.001){/tex}
Hence for all values of n, {tex}2^n\times 5^n{/tex} can never end with 5.
Posted by Namrata Das 6 years, 7 months ago
- 1 answers
Manvi Tiwari 6 years, 7 months ago
Posted by Lavanya Agrawal 6 years, 7 months ago
- 1 answers
Sia ? 6 years, 7 months ago
Now,
9350 = 2730{tex}\times {/tex}3 + 1160
2730 = 1160 {tex}\times {/tex}2 + 410
1160 = 410{tex}\times {/tex}2 + 340
410 = 340 {tex}\times {/tex}1 + 70
340 = 70 {tex}\times {/tex}4 + 60
70 = 60 {tex}\times {/tex}1 + 10
60 = 10 {tex}\times {/tex}6 + 0
Therefore, HCF = 10
Posted by Kanta Shakya 6 years, 7 months ago
- 2 answers
Posted by Parveen Garg 6 years, 7 months ago
- 1 answers
Ram Kushwah 6 years, 7 months ago
Move opposite to tree and measure the distance from bank of river to where angle of elevation is 30,
Then breadth of river and height of tree can be calculated
Posted by Surej Sadanand 6 years, 7 months ago
- 1 answers
Posted by Ashutosh Pandey 6 years, 7 months ago
- 2 answers
Posted by Aastha Richhariya?? 6 years, 7 months ago
- 2 answers
King Of The Kings ???? 6 years, 7 months ago
Sia ? 6 years, 7 months ago
Posted by Shashwat Shukla 6 years, 7 months ago
- 1 answers
Posted by Anshu Kalotra 6 years, 7 months ago
- 1 answers
Sia ? 6 years, 7 months ago
Posted by Shashwat Shukla 6 years, 7 months ago
- 2 answers
Posted by Suman Sharma 6 years, 7 months ago
- 3 answers
Posted by Basant Rawat 6 years, 7 months ago
- 2 answers
Sia ? 6 years, 7 months ago
0< or =r<b.<br>b=3
a=3q+r.
0<or=r<3<br>r=0,1,2.
Therefore possible values of r are 0,1,2.
Posted by Sapna Chaudhary 6 years, 7 months ago
- 1 answers
Posted by Meena Kapoor 6 years, 7 months ago
- 1 answers
Sia ? 6 years, 7 months ago
Let x students planned the picnic.
Then, (x - 8) students attended the picnic.
Total bus charges = Rs. 1440
{tex}\therefore \quad \frac { 1440 } { ( x - 8 ) } - \frac { 1440 } { x } = 30{/tex}
{tex}\Rightarrow \frac { 1 } { ( x - 8 ) } - \frac { 1 } { x } = \frac { 30 } { 1440 } \Rightarrow \frac { x - ( x - 8 ) } { ( x - 8 ) x } = \frac { 1 } { 48 }{/tex}
{tex}\Rightarrow \quad \frac { 8 } { \left( x ^ { 2 } - 8 x \right) } = \frac { 1 } { 48 } \Rightarrow{/tex} x2 - 8x = 384 [ by cross multiplication]
{tex}\Rightarrow{/tex} x2 - 8x - 384 = 0 {tex}\Rightarrow{/tex} x2 - 24x + 16x - 384 = 0
{tex}\Rightarrow{/tex} x(x - 24) + 16(x - 24) = 0 {tex}\Rightarrow{/tex} (x - 24)(x + 16) = 0
{tex}\Rightarrow{/tex} x - 24 = 0 or x + 16 = 0 {tex}\Rightarrow{/tex} x = 24 or x = -16
{tex}\Rightarrow{/tex} x = 24 [{tex}\because{/tex} number of students cannot be negative]
Thus, 24 students planned the picnic.
- Number of students who attended the picnic = (24 - 8) = 16
- Share of 24 students = Rs. 1440
Share of 8 students = Rs. {tex}\left( \frac { 1440 } { 24 } \times 8 \right){/tex} = Rs. 480
{tex}\therefore{/tex} money paid towards the fee = Rs. 480
Posted by Harsh Singh 6 years, 7 months ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 7 months ago
{tex}12576 = 4052 \times 3 + 420{/tex}
{tex}4052 = 420 \times 9 + 272{/tex}
{tex}420 = 272 \times 1 + 148{/tex}
{tex}272 = 148 \times 1 + 124{/tex}
{tex}148 = 124 \times 1 + 24{/tex}
{tex}124 = 24 \times 5 + 4{/tex}
{tex}24 = 4 \times 6 + 0{/tex}
HCF of 12576 and 4052 is '4'.
0Thank You