No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 6 years, 7 months ago

{tex}12576 = 4052 \times 3 + 420{/tex}
{tex}4052 = 420 \times 9 + 272{/tex}
{tex}420 = 272 \times 1 + 148{/tex}
{tex}272 = 148 \times 1 + 124{/tex}
{tex}148 = 124 \times 1 + 24{/tex}
{tex}124 = 24 \times 5 + 4{/tex}
{tex}24 = 4 \times 6 + 0{/tex}
HCF of 12576 and 4052 is '4'.

  • 1 answers

Ayush Singh 6 years, 7 months ago

3/8
  • 1 answers

Sia ? 6 years, 7 months ago

You can check the marks distribution here : <a href="https://mycbseguide.com/cbse-syllabus.html">https://mycbseguide.com/cbse-syllabus.html</a>

  • 1 answers

Sia ? 6 years, 7 months ago

Given,
{tex}\frac { 1 } { ( a + b + c ) } = \frac { 1 } { a } + \frac { 1 } { b } + \frac { 1 } { c }{/tex}
{tex}\Rightarrow \quad \frac { 1 } { ( a + b + c ) } - \frac { 1 } { c } = \frac { 1 } { a } + \frac { 1 } { b } \Rightarrow \frac { c - ( a + b + c ) } { c ( a + b + c ) } = \frac { b + a } { a b }{/tex}
{tex}\Rightarrow \quad \frac { - ( a + b ) } { c ( a + b + c ) } = \frac { ( a + b ) } { a b }{/tex}

On dividing both sides by (a+b)
{tex}\Rightarrow \quad \frac { - 1 } { c ( a + b + c ) } = \frac { 1 } { a b }{/tex}

Now cross multiply
{tex}\Rightarrow{/tex} c(a + b + c) = -ab 
{tex}\Rightarrow{/tex} c2 + ac + bc + ab = 0

{tex}\Rightarrow{/tex} c(c +a) + b(c +a) = 0
{tex}\Rightarrow{/tex} (c + a) (c + b) = 0

{tex}\Rightarrow{/tex} c + a = 0 or c + b = 0
{tex}\Rightarrow{/tex} c = -a or c = -b.
Therefore, -a and -b are the roots of the  equation.

  • 1 answers

Yogita Ingle 6 years, 7 months ago

HCF of 234 and 111
234 = 2 x 3 x 3 x 13
111 = 3 x 37
Therefore, HCF = 3
So we can write it
3 = 111 - (12 x 9)
3 = 111 - {(234 – 111 x 2) x 9}[where 12 = 234 - 111 x 2]
3 = 111 - {234 x 9 – 222 x 2 x 9}
3 = 111 - (234 x 9) + (111 x 18)
3 = 111 + (111 x 18) - (234 x 9)
3 = 111[1 + 18] – 234 x 9
3 = 111 x 19 – 234 x 9
3 = 234 x (-9) + 222 x 19

Hence, HCF of 234 and 111 in the form of
234x + 111y is 234 x (-9) + 111 x 19

 

  • 2 answers

Sonam Singh 6 years, 7 months ago

Thnku..

Yogita Ingle 6 years, 7 months ago

Given, 

ax + by = a - b   .......1  

bx - ay = a + b   .......2

Multiply by a in equation 1 and b in equation 2, we get

a2 x + aby = a2 - ab   .......3  

b2 x - aby = ab + b2   .......4

Add equation 3 and 4, we get

      a2 x + aby + b2 x - aby = a2 - ab + ab + b2

=> a2 x + b2 x = a2 + b

=> x(a2 + b2 ) = a2 + b2

=> x = (a2 + b2 )/(a2 + b2 ) 

=> x = 1

Put value of x in equation 1, we get

=> a + by = a - b

=> by = a - b - a

=> by = -b

=> y = -b/b

=> y = -1

So, x = 1, y = -1

  • 1 answers

Sia ? 6 years, 7 months ago

We have,
tan 5° tan 25° tan 30° tan 65° tan 85°
= (tan 5° tan 85°) (tan 25° tan 65°) tan 30°  {tex}\left[ \begin{array} { c } { \because \tan 85 ^ { \circ } = \tan \left( 90 ^ { \circ } - 5 ^ { \circ } \right) = \cot 5 ^ { \circ } } \\ { \tan 65 ^ { \circ } = \tan \left( 90 ^ { \circ } - 25 ^ { \circ } \right) = \cot 25 ^ { \circ } } \end{array} \right] {/tex}
= (tan 5° cot 5°) (tan 25° cot 25°) tan 30°

={tex}\left(tan5^\circ\times\frac1{\tan5^\circ}\right)\left(tan25^\circ\times\frac1{\tan25^\circ}\right){/tex}   {tex}\left[cot\theta=\frac1{\tan\theta}\right]{/tex}
{tex}= 1 \times 1 \times \frac { 1 } { \sqrt { 3 } } = \frac { 1 } { \sqrt { 3 } } {/tex}

  • 1 answers

Sia ? 6 years, 7 months ago

We have,
f(x) = abx2 + (b2 - ac)x - bc
= abx2 + b2x - acx - bc
= bx(ax + b ) - c(ax + b)
= (ax + b) (bx - c)
Now r(x)=0 if 

ax+b=0 or bx-c=0

{tex}\style{font-family:Arial}{\begin{array}{l}\style{font-size:12px}{\mathrm i}\style{font-size:12px}.\style{font-size:12px}{\mathrm e}\style{font-size:12px}.\style{font-size:12px}\;\style{font-size:12px}{\mathrm x}\style{font-size:12px}=\style{font-size:12px}-\frac{\style{font-size:12px}{\mathrm b}}{\style{font-size:12px}{\mathrm a}}\style{font-size:12px}\;\style{font-size:12px}{\mathrm{or}}\style{font-size:12px}\;\style{font-size:12px}{\mathrm x}\style{font-size:12px}=\frac{\style{font-size:12px}{\mathrm c}}{\style{font-size:12px}{\mathrm b}}\\\end{array}}{/tex}

Thus, the zeroes of f(x) are : 

{tex}\style{font-family:Arial}{\style{font-size:12px}{\mathrm\alpha}\style{font-size:12px}=\style{font-size:12px}-\frac{\style{font-size:12px}{\mathrm b}}{\style{font-size:12px}{\mathrm a}}\style{font-size:12px}\;\style{font-size:12px}{\mathrm{and}}\style{font-size:12px}\;\style{font-size:12px}{\mathrm\beta}\style{font-size:12px}=\frac{\style{font-size:12px}{\mathrm c}}{\style{font-size:12px}{\mathrm b}}}{/tex}

{tex}\text{α+β=-}\frac{\mathrm b}{\mathrm a}\;+\frac{\mathrm c}{\mathrm b}=\frac{-\mathrm b^2+ac}{ab}=-\frac{\mathrm( b^2-ac)}{ab}--(1){/tex}

{tex}\text{αβ=}\frac{\mathrm b}{\mathrm a}\;\times-\frac{\mathrm c}{\mathrm b}=-\frac{\mathrm c}{\mathrm a}----(2){/tex}

Now for f(x) = abx2 + (b2 - ac)x - bc

A = ab , B= b2 - ac, C = -b

{tex}-\frac BA=-\frac{b^2-ac}{ab}--(3){/tex}

{tex}\frac CA=\frac{-bc}{ab}=-\frac ca----(4){/tex}

From (1) & (3) and (2)  & (4)  we conclude:

{tex}\begin{array}{l}\text{α+β=-}\frac{\mathrm B}{\mathrm A}\\\end{array}{/tex}

{tex}\begin{array}{l}\text{αβ=}\frac C{\mathrm A}\\\end{array}{/tex}

  • 1 answers

Sia ? 6 years, 7 months ago

Let {tex}\alpha,\beta{/tex} be the zeros of the polynomial {tex}f(x)=x^2-8x+k{/tex}.
Sum of zeroes = {tex} \alpha + \beta = - \left( \frac { - 8 } { 1 } \right) = 8{/tex} and, Product of zeroes = {tex} \alpha \beta = \frac { k } { 1 } = k{/tex}
Now, 
{tex} \alpha ^ { 2 } + \beta ^ { 2 } = 40{/tex}

{tex} \Rightarrow \alpha ^ { 2 } + \beta ^ { 2 }+2 \alpha\beta-2 \alpha\beta= 40{/tex}
{tex} \Rightarrow \quad ( \alpha + \beta ) ^ { 2 } - 2 \alpha \beta = 40{/tex}
{tex} \Rightarrow \quad 8 ^ { 2 } - 2 k = 40{/tex}
{tex} \Rightarrow \quad 2 k = 64 - 40 {/tex}

{tex}\Rightarrow 2 k = 24 {/tex}

{tex}\Rightarrow k = 12{/tex}

  • 1 answers

Sia ? 6 years, 7 months ago

First find  the HCF of 575 and 225 by Using Euclid's division algorithm,
575 = 225{tex}\times{/tex} 2 + 125
225 = 125{tex}\times{/tex} 1 + 100
125 = 100{tex}\times{/tex} 1 + 25
100 = 25 {tex}\times{/tex}4 + 0
So, HCF of 575 and 225 = 25

  • 1 answers

Pragya Kumari 6 years, 7 months ago

3
  • 1 answers

Sia ? 6 years, 7 months ago

Let speed of the train be x km/hr and speed of the car be y km/hr

Total distance = 600 Km

In first case, he travelled 320 km by train and rest i.e. 600 -320 =280 Km by Car.

In 2nd case, he travelled 200 Km by train and rest i.e. 400 Km by Car.
Using formula ; {tex}time=\frac{distance}{speed}{/tex} & according to question,

{tex}\frac{320}{x}+\frac{280}{y}=\frac{26}{3}{/tex} ..(i) (first case, here time = 8hr 40 minutes= 26/3 hrs)
{tex}\frac{200}{x}+\frac{400}{y}=\frac{55}{6}{/tex} ..(ii) (2nd case, here time = 30 minutes i.e. 1/2 hrs greater than that of 1st case)

multiplying eq. (i) by 5 and eq. (ii) by 8, we get
{tex}\frac{1600}{x}+\frac{1400}{y}=\frac{130}{3}{/tex} ..(iii)
{tex}\frac{1600}{x}+\frac{3200}{y}=\frac{220}{3}{/tex} ..(iv)
subtracting (iii) by (iv), we get
{tex}\frac{-1800}{y}=\frac{-90}{3}{/tex}
y = {tex}\frac{1800 \times 3}{90}{/tex}
y = 60 km/hr
Putting y = 60 in eq. (i), we get
{tex}\frac{320}{x}+\frac{280}{60}=\frac{26}{3}{/tex}
{tex}\frac{320}{x}=\frac{26}{3}-\frac{14}{3}{/tex}
{tex}\frac{320}{x}=\frac{12}{3}{/tex}
x = {tex}\frac{320 \times 3}{12}{/tex}
x = 80 km/hr

Hence, speed of the train = 80 Km/hr
speed of the car = 60 Km/hr

  • 1 answers

Sia ? 6 years, 7 months ago

It is conventional.

  • 1 answers

Sia ? 6 years, 7 months ago

{tex}2^{\mathrm n}\times5^{\mathrm n}{/tex}

{tex}\text{=10}^n{/tex}

{tex}\text{If n=0 then 10}^0\text{=1}{/tex}

{tex}\text{If n>0 then 10}^n\text{ will end with 0 }{/tex}

{tex}\mathrm{If}\;\mathrm n<0\;\mathrm{then}\;10^{\mathrm n}\;\mathrm{ends}\;\mathrm{with}1\;(\mathrm e.\mathrm g.\;0.1,0.01,0.001){/tex}

Hence  for all values of n,   {tex}2^n\times 5^n{/tex} can never end with 5.

  • 1 answers

Manvi Tiwari 6 years, 7 months ago

Let a=√7/4+5 is a rational number. a×4+5=√7 Since a×4+5 is a rational number. But we know that,√7 is anirrational number. This contradicts due to our wrong supposition. Therefore,a=√7/4+5 is an irrational number. Hence prooved.
  • 1 answers

Sia ? 6 years, 7 months ago

Now,
9350 = 2730{tex}\times {/tex}3 + 1160
2730 = 1160 {tex}\times {/tex}2 + 410
1160 = 410{tex}\times {/tex}2 + 340
410 = 340 {tex}\times {/tex}1 + 70
340 = 70 {tex}\times {/tex}4 + 60
70 = 60 {tex}\times {/tex}1 + 10
60 = 10 {tex}\times {/tex}6 + 0
Therefore, HCF = 10

  • 2 answers

King Of The Kings ???? 6 years, 7 months ago

Composite number

Zikra Sajid 6 years, 7 months ago

composite number
  • 1 answers

Sia ? 6 years, 7 months ago

4u2 - 8u = 0
4u(u - 2) = 0
Therefore, u = 0 and u = 2

  • 2 answers

Harshita Suri 6 years, 7 months ago

A is 0

Ashutosh Pandey 6 years, 7 months ago

I don't know
  • 2 answers

King Of The Kings ???? 6 years, 7 months ago

A rational no. Can be written in the foam of p/q and q is not equal to zero

Sia ? 6 years, 7 months ago

A rational number is any number that can be expressed as the quotient or fraction p/q of two integers, a numerator p and a non-zero denominator q. Since q may be equal to 1, every integer is a rational number.
  • 1 answers

Diya ? 6 years, 7 months ago

Hello
  • 1 answers

Sia ? 6 years, 7 months ago

Reduction of order is a technique in mathematics for solving second-order linear ordinary differential equations. It is employed when one solution is known and a second linearly independent solution is desired. The method also applies to n-th order equations.
  • 2 answers

King Of The Kings ???? 6 years, 7 months ago

Yes

Abcd Pro 6 years, 7 months ago

Yup
  • 3 answers

King Of The Kings ???? 6 years, 7 months ago

HCF of 344=2

Itika Singhal 6 years, 7 months ago

HCF of 344 and???

Shivansh Handa 6 years, 7 months ago

HCF OF 344 = 2
  • 2 answers

Itika Singhal 6 years, 7 months ago

0,1,2

Sia ? 6 years, 7 months ago

A=bq+r
0< or =r<b.<br>b=3
a=3q+r.
0<or=r<3<br>r=0,1,2.
Therefore possible values of r are 0,1,2.
  • 1 answers

Sia ? 6 years, 7 months ago

{tex}A = \frac { h _ { b } b } { 2 }{/tex}

  • 1 answers

Sia ? 6 years, 7 months ago

Let x students planned the picnic.
Then, (x - 8) students attended the picnic.
Total bus charges = Rs. 1440
{tex}\therefore \quad \frac { 1440 } { ( x - 8 ) } - \frac { 1440 } { x } = 30{/tex}
{tex}\Rightarrow \frac { 1 } { ( x - 8 ) } - \frac { 1 } { x } = \frac { 30 } { 1440 } \Rightarrow \frac { x - ( x - 8 ) } { ( x - 8 ) x } = \frac { 1 } { 48 }{/tex}
{tex}\Rightarrow \quad \frac { 8 } { \left( x ^ { 2 } - 8 x \right) } = \frac { 1 } { 48 } \Rightarrow{/tex} x2 - 8x = 384 [ by cross multiplication]
{tex}\Rightarrow{/tex} x2 - 8x - 384 = 0 {tex}\Rightarrow{/tex} x2 - 24x + 16x - 384 = 0
{tex}\Rightarrow{/tex} x(x - 24) + 16(x - 24) = 0 {tex}\Rightarrow{/tex} (x - 24)(x + 16) = 0
{tex}\Rightarrow{/tex} x - 24 = 0 or x + 16 = 0 {tex}\Rightarrow{/tex} x = 24 or x = -16
{tex}\Rightarrow{/tex} x = 24 [{tex}\because{/tex} number of students cannot be negative]
Thus, 24 students planned the picnic.

  1. Number of students who attended the picnic = (24 - 8) = 16
  2. Share of 24 students = Rs. 1440

Share of 8 students = Rs. {tex}\left( \frac { 1440 } { 24 } \times 8 \right){/tex} = Rs. 480
{tex}\therefore{/tex} money paid towards the fee = Rs. 480

  • 1 answers

Meena Kapoor 6 years, 7 months ago

X = 2a-y a(2a-y)-by = a^2+b^2 a^2-ay-b^2=0

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App