No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Sia ? 6 years, 7 months ago

p(x) = 3x2 + x - 2 = 0
= 3x2 + 3x - 2x - 2 = 0
= 3x(x + 1) - 2(x + 1) = 0
= (3x - 2)(x + 1) = 0
Hence, zeroes are -1 and {tex}\frac 23{/tex}
Verification:
Sum of zeroes = {tex}- 1 + \frac { 2 } { 3 } = \frac { - 1 } { 3 }{/tex}
Product of zeroes = {tex}( - 1 ) \times \left( \frac { 2 } { 3 } \right) = \frac { -2 } { 3 }{/tex}
Again sum of zeroes = {tex}- \frac { \text { Coeff. of } x } { \text { Coeff. of } x ^ { 2 } } = \frac { - 1 } { 3 }{/tex}
Product of zeroes = {tex}\frac { \text { Constant term } } { \text { Coeff. of } x ^ { 2 } }{/tex} = {tex}\frac{-2}{3}{/tex}
Verified.

Shiva?? Garg?? 6 years, 7 months ago

Kya h y
  • 1 answers

Rajan Kumar Pasi 6 years, 7 months ago

Here is the solutino of this question . I hope that you will understand this
<a href="https://www.teachoo.com/9007/2862/Question-30/category/CBSE-Class-10-Sample-Paper-for-2019-Boards/">https://www.teachoo.com/9007/2862/Question-30/category/CBSE-Class-10-Sample-Paper-for-2019-Boards/</a>

  • 6 answers

Sejal Kathait?????? 6 years, 7 months ago

Thanks mates☺☺☺

Yogita Ingle 6 years, 7 months ago

For a pair of given positive integers ‘a’ and ‘b’, there exist unique integers ‘q’ and ‘r’ such that

a=bq+r , where 0≤r<b

Explanaion: Thus, for any pair of two positive integers a and b; the relation

a=bq+r , where 0≤r<b

will be true where q is some integer.

Krrishiv Boopathi 6 years, 7 months ago

a=bq+r

Diya ? 6 years, 7 months ago

Also r is less than b

Diya ? 6 years, 7 months ago

r<b

Diya ? 6 years, 7 months ago

Euclid's division lemma:- Given positive integers a and b, there exist unique integers q and r satisfying a=bq+r, 0≤r<b.
  • 0 answers
  • 2 answers

Yogita Ingle 6 years, 7 months ago

420 = 272×1 + 148

272 = 148×1+124

148 = 124×1 + 24

124 = 24×5 + 4

24 = 4×6 + 0.

Therefore,4 is the HCF of 272 and 420.

Gautam Kumar 6 years, 7 months ago

4 is right answer
  • 2 answers

Riya Rathore 6 years, 7 months ago

12 ka factor2×2×3ha or jo digit 0 sa end hota ha 2 or 5 come complesari ha

Natasha Sharma 6 years, 7 months ago

12n can be written as (3×4)n and 3 and 4 are the factors of 12 and 5 is not the factor so 11n can nvr end with 0
  • 1 answers

Rajan Kumar Pasi 6 years, 7 months ago

{tex}\huge\implies \sqrt{\frac {49}{147}}\\ \huge\implies \sqrt\frac {7\times7}{21\times7}\\ \huge\implies \sqrt\frac {1}{3}\\\huge which\space is\space not\space a\space rational\space number. {/tex}

  • 1 answers

Sia ? 6 years, 7 months ago

We have,
{tex}\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} = \frac{5}{6}{/tex}
{tex}\Rightarrow{/tex} {tex}\frac{(x+1)^2-(x-1)^2}{(x-1)(x+1)}= \frac56{/tex}
{tex}\Rightarrow{/tex} (x2 + 1 + 2x) - (x2 + 1 - 2x) = {tex}\frac{5}{6}{/tex}(x2 - 12)
{tex}\Rightarrow{/tex} x2 + 1 + 2x - x2 - 1 + 2x = {tex}\frac{5}{6}{/tex}(x2 - 1)
{tex}\Rightarrow{/tex} 4x = {tex}\frac{5}{6}{/tex}(x2 - 1)
{tex}\Rightarrow{/tex} 24x = 5(x2 - 1)
{tex}\Rightarrow{/tex} 24x = 5x2 - 5
{tex}\Rightarrow{/tex} 5x2 - 24x - 5 = 0
{tex}\Rightarrow{/tex} 5x2 - 25x + 1x - 5 = 0
{tex}\Rightarrow{/tex} 5x(x - 5) + 1(x - 5) = 0
{tex}\Rightarrow{/tex} (x - 5)(5x + 1) = 0
{tex}\Rightarrow{/tex} x - 5 = 0 or 5x + 1 = 0
{tex}\Rightarrow{/tex} x = 5 or {tex}x = - \frac { 1 } { 5 }{/tex}

  • 1 answers

Rajan Kumar Pasi 6 years, 7 months ago

Very silly question.
Try to improve your imagination and thought process.
Solution: Let the cost of one pencil = Rs. {tex}\large x{/tex}

         and Let the cost of one pen = Rs. {tex}\large y{/tex}

Now, the first sentence: The cost of pencil is half of the cost of pen {tex}\huge \implies x=\frac y2; \space \space \space\implies y=2x ; \space \space \space\implies 2x-y=0{/tex}    

 Now, the second sentence: If the cost of two pencils and one pen is Rs. 20 {tex}\huge \implies 2x+y=20{/tex}

Adding both the equations, we get: {tex}\huge \implies 4x=20​​​​ \space;\space\space \boxed {x=5} {/tex}

Putting the value of "x" in any of the two equation gives the value of "y", we get: {tex}\huge \implies y=2x​​​​ \space;\space\space y=2\times5 \space;\space\space \boxed {y=10} {/tex}

  • 1 answers

Sia ? 6 years, 7 months ago

{tex}\alpha + \beta + \gamma + \delta = - \frac { b } { a }{/tex}
{tex}\alpha \beta + \alpha \gamma + \alpha \delta + \beta \gamma + \beta \delta + \gamma \delta = \frac { c } { a }{/tex}
{tex}\alpha \beta \gamma + \alpha \beta \delta + a \gamma \delta + \beta \gamma\delta = - \frac { d } { a }{/tex}

  • 1 answers

Yogita Ingle 6 years, 7 months ago

If the number 4n, for any n, were to end with the digit zero, then it would be divisible by 5. That is, the prime factorisation of 4n would contain the prime 5. This is not possible because 4n = (2)2n; so the only prime in the factorisation of 4n is 2. So, the uniqueness of the Fundamental Theorem of Arithmetic guarantees that there are no other primes in the factorisation of 4n. So, there is no natural number n for which 4n ends with the digit zero.
You have already learnt how to find the HCF and LCM of two positive integers using the Fundamental Theorem of Arithmetic in earlier classes, without realising it! This method is also called the prime factorisation method. Let us recall this method through an example.

  • 2 answers

Shrianshika Saini 6 years, 7 months ago

Degree of zero and any constant is 0

Yogita Ingle 6 years, 7 months ago

The degree of the zero polynomial is undefined.

  • 1 answers

Rajan Kumar Pasi 6 years, 7 months ago

Try to seek help from example 9 of chapter 2 page no.35

  • 1 answers

Rajan Kumar Pasi 6 years, 7 months ago

Very poor you are, This question is same as of exercise 3.1

  • 3 answers

Sia ? 6 years, 7 months ago

Polynomial is an expression of more than two algebraic terms, especially the sum of several terms that contain different powers of the same variable(s).

Ruplata Sahu 6 years, 7 months ago

'Poly' means many. 'Nomial' means terms. Together it means many terms.

Tanya ?? Mishra 6 years, 7 months ago

Let x be a variable, n be a positive integer and as a real number us called polynomials
  • 2 answers

Sia ? 6 years, 7 months ago

Rational number between 0.25 and 0.32 is 0.28

Irrational number between 0.25 and 0.32 is 0.290290029000.........

Lovely Ganesh 6 years, 7 months ago

32096877551
  • 8 answers

Aastha Richhariya??.. 6 years, 7 months ago

.

Aastha Richhariya??.. 6 years, 7 months ago

Raunak bestie ek bar dediye

Veena Patel 6 years, 7 months ago

Rd sharma

Raunak ??‍? 6 years, 7 months ago

NCERT for boards and NCERT exemplar ......board ke liye bas itna hi kati hai !!!!

Suyash? Jain 6 years, 7 months ago

RD Sharma??

✨Diya ✨ 6 years, 7 months ago

R.d. Sharma?

Palak Bansal 6 years, 7 months ago

Rd sharma

?Saffron ?? 6 years, 7 months ago

Rs agarwal..
  • 1 answers

Palak Bansal 6 years, 7 months ago

Ya
  • 1 answers

Diya ? 6 years, 7 months ago

To find the largest number which divides 129 and 545 leaving remainder 3 and 5 i.e. HCF. Consider HCF be x. In order to make 129 and 545 completely divisible by x, we need to deduct the remainder 3 and 5 from the cases. 126 =2× 3 x 3 x 7 , 540= 2×2×3×3 x 3 x 5 ⇒ x = 2×3×3 = 18 ∴ largest number which divides 126 and 540 leaving remainder 3 and 5 in case is 18.
  • 2 answers

Gaurav Seth 6 years, 7 months ago

Let us assume that √3 is a rational number.

then, as we know a rational number should be in the form of p/q 

where p and q are co- prime number.

So,

√3 = p/q { where p and q are co- prime}

√3q = p

Now, by squaring both the side 

we get,

(√3q)² = p²

3q² = p² ........ ( i )
So,

if 3 is the factor of p²

then, 3 is also a factor of p ..... ( ii )


=> Let p = 3m { where m is any integer }

squaring both sides

p² = (3m)²

p² = 9m² 

putting the value of p² in equation ( i )

3q² = p² 

3q² = 9m²

q² = 3m²

So,

if 3 is factor of q²

then, 3 is also factor of q
Since

3 is factor of p & q both

So, our assumption that p & q are co- prime is wrong

Yogita Ingle 6 years, 7 months ago

Let us assume that √3 is a rational number
That is, we can find integers a and b (≠ 0) such that √3 = (a/b)
Suppose a and b have a common factor other than 1, then we can divide by the common factor, and assume that a and b are coprime.
√3b = a
⇒ 3b2=a2 (Squaring on both sides) → (1)
Therefore, a2 is divisible by 3
Hence ‘a’ is also divisible by 3.
So, we can write a = 3c for some integer c.
Equation (1) becomes,
3b2 =(3c)2
⇒ 3b2 = 9c2
∴ b2 = 3c2
This means that b2 is divisible by 3, and so b is also divisible by 3.
Therefore, a and b have at least 3 as a common factor.
But this contradicts the fact that a and b are coprime.
This contradiction has arisen because of our incorrect assumption that √3 is rational.
So, we conclude that √3 is irrational.

  • 1 answers

Anuj Singh 6 years, 7 months ago

HCF OF 144 & 198 is 18 and LCM is 1584.
  • 1 answers

Rajan Kumar Pasi 6 years, 7 months ago

Your visualization power is low.
In recasting process, the total volume of first solid shape is used to make another shape(s),
Thus, the volume of first solid = the volume of another solid(s).
Solution: For sphere: let the radius = r cm    ;    The volume = v cm3

                For cone: let the radius = R cm    ;    The volume = V cm3

The volume of the sphere (v)= {tex}\large\frac{4\pi r^3}{3}{/tex}{tex}\large\implies\frac{4\pi \times3^3}{3}{/tex}{tex}\large\implies{4\pi 3^2}{/tex}{tex}\large\implies{4\pi \times9}{/tex}{tex}\large\implies\boxed {36\pi}{/tex}
The volume of the cone (V)= {tex}\large\frac{\pi (R)^2h}{3}{/tex}{tex}\large\implies\frac{\pi \times R^2\times3}{3}{/tex}{tex}\large\implies\boxed{\pi\times R^2}{/tex}
Therefore, {tex}\large\implies V=v\\ \large\implies {\pi\times R^2} = 36\pi\\(\pi \space of \space both \space sides\space are\space cancelled\space or \space divided)\\ \large\implies { R^2} = 36\space\space\space;\large\implies R=\sqrt{36}\\\large\implies R=6\space cm. {/tex}

 

  • 1 answers

Purva Dhammi 6 years, 7 months ago

Distance formula= √ (x- x1)2  + ( y2 - y1)2

Distance = 10 units

√ (13-3)+ (m-1)2                         = 10

√  (10) + m+ (1)- 2(m)(1) = 10            

Squaring both sides

(10) + m+ (1)- 2(m)(1) = (10)2

     100 + m+ 1 - 2m           = 100

    m-2m + 1                         = 100 - 100

               m2 -2m+1               = 0

            m2 - 1m - 1m +1       =0

         m (m -1) -1( m-1)         =0

             ( m-1) (m-1)              =0

                      m-1=0

            Therefore,      m= 1

  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

{tex}\sqrt { 180 } = \sqrt { 2 ^ { 2 } \times 3 ^ { 2 } \times 5 } = 6 \sqrt { 5 }{/tex}
On multiplying with {tex}\sqrt { 5 }{/tex} and 1, we get
{tex}6 \sqrt { 5 } \times \sqrt { 5 } \times 1 = 30{/tex}
{tex}\therefore{/tex}   {tex}\sqrt 5{/tex} and 1 are two numbers which on multiplication with {tex}\sqrt{180} {/tex} gives a rational number.
One is irrational and other is rational.

  • 1 answers

Sia ? 6 years, 7 months ago

Let f(x)=3x2 + 4x +2k
If -2 is zero of f(x) then f(-2)=0 then f(-2)=0
{tex}\Rightarrow{/tex} 3 × (-2)² + 4 × -2 + 2k = 0
{tex}\Rightarrow{/tex} 12 - 8 + 2k = 0
{tex}\Rightarrow{/tex} 4 + 2k = 0
{tex}\Rightarrow{/tex} 2k = -4
{tex}\Rightarrow{/tex} k = {tex}\frac{{ - 4}}{2}{/tex}
{tex}\Rightarrow{/tex} k = -2

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App