No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Aastha Aastha 6 years, 7 months ago

No one has plenty of time to answer such a huge question??
  • 1 answers

Ram Kushwah 6 years, 7 months ago

{tex}\begin{array}{l}\sqrt2=2^{1/2}\\(\sqrt2)^2=(2^\frac12)^2\\=2^{\frac12\times2}\\=2^1\\=2\\Hence\;the\;root\;is\;removed\;\end{array}{/tex}

 

  • 0 answers
  • 1 answers

Abcd Singh ?? 6 years, 7 months ago

What we have to do now we all know that one pair of trapeziym is parallel abd other one is non parallel
  • 1 answers

Mr Uk.Aala 6 years, 7 months ago

Question dhaag se bhj bhai
  • 2 answers

Ram Kushwah 6 years, 7 months ago

f(t)=t^2-4t+3

{tex}\begin{array}{l}\alpha+\beta=4,\alpha\beta=3\\\alpha^4\beta^3+\alpha^3\beta^4\\=\alpha^3\beta^3(\alpha+\beta)\\=(3)^3(4)\\=27\times4\\=108\\\end{array}{/tex}

Dilip Prajapati 6 years, 7 months ago

135
  • 1 answers

Rajan Kumar Pasi 6 years, 7 months ago

I think you didn't have a clear image of this question in your mind.
Lets see this,

Year Increment Total
1 0 5000
2 500 5500
3 0 5500
4 550 6050
5 0 6050
6 605 6655
7 0 6655
8 665.5 7320.5
9 0 7320.5
10 732.05 8052.55

We can see here that to be an AP the common difference "d" must be the same between each successive terms.

But here, 5500, 6050, 6655, 7320.5 are not making an AP which can be seen clearly.

  • 0 answers
  • 0 answers
  • 0 answers
  • 2 answers

Sia ? 6 years, 7 months ago

0.2 x + 0.3 y = 1.3 ;  0.4 x + 0.5 y = 2.3
The given system of linear equations is:
0.2 x + 0.3 y = 1.3..............(1)
0.4 x + 0.5 y = 2.3...................(2)
From equation (1), 
0.3 y = 1.3 - 0.2 x
{tex}\Rightarrow \quad y = \frac { 1.3 - 0.2 x } { 0.3 }{/tex}.........................(3)
Substituting this value of y in equation(2), we get
{tex}0.4 x + 0.5 \left( \frac { 1.3 - 0.2 x } { 0.3 } \right) = 2.3{/tex}
{tex}\Rightarrow{/tex}0.12 x + 0.65 - 0.1 x = 0.69
{tex}\Rightarrow{/tex}0.12 x - 0.1 x = 0.69 - 0.65
{tex}\Rightarrow{/tex}0.02 x = 0.04
{tex}\Rightarrow{/tex}{tex}\mathrm { x } = \frac { 0.04 } { 0.02 } = 2{/tex}
Substituting this value of x in equation(3), we get
{tex}y = \frac { 1.3 - 0.2 ( 2 ) } { 0.3 } = \frac { 1.3 - 0.4 } { 0.3 } = \frac { 0.9 } { 0.3 } = 3{/tex}
Therefore, the solution is x = 2, y = 3, we find that both equation (1) and (2) are satisfied as shown below:
0.2 x + 0.3 y = ( 0.2 )( 2 )+( 0.3)( 3 ) = 0.4 + 0.9 = 1.3
0.4 x + 0.5 y= ( 0.4 )( 2 ) + ( 0.5 )( 3 ) } = 0.8 + 1.5 = 2.3
This verifies the solution.​​​​​​​

Yogita Ingle 6 years, 7 months ago

0.2x+0.3y = 1.3 ....... (i)
eq (i) ×10
2x+3y=13
0.4x+0.5y=2.3 ...... (ii)
eq(ii) ×10
4x+5y=23
from eq (i)
x =13-3y/2

putting value of x in eq (ii)
4(13-3y/2)+5y=23
26-6y+5y=23
26-y=23
y= 3
putting value of y in eq (i)
2x+3(3)=13
2x=13-9
x=4/2
x=2

 

  • 1 answers

Sia ? 6 years, 7 months ago

x- 6x + 12
Here, a = 1, b = -6 and c = 12
D = b2 - 4ac
D = (-6)2 - 4(1)(12)
D = 36 - 48
D = -12
Hence, D < 0
Therefore, there exists no real root of the equation.

  • 1 answers

Anuj Anuj Anuj Anuj 6 years, 3 months ago

10 mm to km
  • 4 answers

Vanshika Tyagi 6 years, 7 months ago

Ha aate hai...

Vjlaxmi Saini 6 years, 7 months ago

WHAT SAY.??

Vjlaxmi Saini 6 years, 7 months ago

YES..

Vanshika Tyagi 6 years, 7 months ago

Board exam me??
  • 1 answers

????? ? 6 years, 7 months ago

Let no. of 20 paise coins is x and no. of 25 paise coins is y. Then by the given question, x+y=50 →equ.(1) and 20x+25y=1125 [∵, Rs. 11.25=1125 paise] or, 4x+5y=225 →equ.(2) Multiplying (1) with 4 we get, 4x+4y=200→equ.(3) Subtracting (3) from (2) we get, y=25 Putting in (1) x=50-y=50-25=25; ∴x=25, y=25
  • 1 answers

Ram Kushwah 6 years, 7 months ago

{tex}\begin{array}{l}\frac{7\sin\;\theta+\;5\cos\theta}{\;5\sin\theta\;+\;7\;\cos\;\theta}=\frac{7\sin\;\theta+7\sin\;\theta}{7\sin\;\theta+{\displaystyle\frac{\;7\times5}5}\cos\theta}\\=\frac{\displaystyle14\sin\;\theta}{7\sin\;\theta+{\displaystyle\frac75}\times7\sin\;\theta}=\frac{70\sin\;\theta}{7\sin\;\theta+49\sin\;\theta}\\=\frac{\displaystyle70\sin\;\theta}{\displaystyle56\sin\;\theta}=\frac{70}{56}=\frac54\end{array}{/tex}

  • 1 answers

Sia ? 6 years, 6 months ago

On a graph paper, draw a horizontal line XOX' and a vertical line YOY' as the x-axis and they-axis respectively.
{tex}3x + y - 11 = 0{/tex} {tex}\Rightarrow{/tex}{tex}y = (11 -3x){/tex}. ...(i)
Putting {tex}x = 2{/tex} in (i), we get {tex}y = 5{/tex}.
Putting {tex}x = 3{/tex} in (i), we get {tex}y = 2{/tex}.
Putting {tex}x = 5{/tex} in (i), we get {tex}y = -4{/tex}.

x 2 3 5
y 5 2 -4

On the graph paper, plot the points {tex}A (2, 5), B(3, 2)\ and\ C(5, -4).{/tex}
Join AB and BC to get the graph line ABC.
Thus, the line ABC is the graph of the equation {tex}3x + y - 11 = 0{/tex}.
{tex}x - y - 1 = 0{/tex} {tex}\Rightarrow{/tex}{tex}y = (x - 1){/tex} . ...(ii)
Putting {tex}x = -3{/tex} in (ii), we get {tex}y = -4{/tex}.
Putting {tex}x = 0{/tex} in (ii), we get {tex}y = -1{/tex}.
Putting {tex}x = 3{/tex} in (ii), we get {tex}y = 2{/tex}.

x -3 0 3
y -4 -1 2

On the same graph paper as above, plot the points {tex}P(-3, -4)\ and\ Q(0, -1){/tex}. The third point {tex}B(3,2){/tex} is already plotted.
Join PQ and QB to get the graph line PQB.
Thus, line PQB is the graph of the equation {tex}x - y - 1 = 0{/tex}.
The two graph lines intersect at the point {tex}B(3,2){/tex}. {tex}x = 3, y = 2{/tex} is the solution of the given system of equations.
The region bounded by these lines and the y-axis has been shaded.


On extending the graph lines on both sides, we find that these graph lines intersect the y-axis at the points Q(0, -1) and R(0,11).

  • 1 answers

Sia ? 6 years, 4 months ago

We know that, the ratio of the areas of two similar triangles is equal to the square of their corresponding sides.
Also,   
{tex}\Delta ADE{/tex} {tex}\sim{/tex} {tex}\triangle{/tex}ABC [given]
Now AD = 1, DB = 2 
{tex}\therefore{/tex} AB = AD + DB = 1 + 2 = 3
{tex}\therefore{/tex} {tex}\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle A D E)}{/tex} = {tex}\frac{A B^{2}}{A D^{2}}{/tex} = {tex}\left(\frac{3}{1}\right)^{2}{/tex} = {tex}\frac{9}{1}{/tex} 

  • 0 answers
  • 2 answers

Sia ? 6 years, 7 months ago

Let the ten's and unit's digits of the required number be x and y respectively.
Then, the number = (10x + y).
The number obtained on reversing the digits = (10y + x).
As per given condition
The sum of a two-digit number and the number obtained by reversing the order of its digits is 99.
{tex}\therefore{/tex} (10y + x) + (10x + y) = 99
{tex}\Rightarrow{/tex} 11(x + y) = 99
{tex}\Rightarrow{/tex} x + y = 9.
The digits differ by 3
So, (x - y) = ±3.
Thus, we have
x + y = 9 ........ (i)
x - y = 3 .......... (ii)
or x + y = 9 ......... (iii)
x - y = -3 ............ (iv)
From (i) and (ii), we get x = 6, y = 3.
From (iii) and (iv), we get x = 3, y = 6.
Hence, the required number is 63 or 36.

Nitesh Kumar 6 years, 7 months ago

first no.=10x+ y reversing no.=10y+x A.T.Q (10x+y)+(10y+x)=99 11x+11y=99 x+y=99/11 x+y= 9 (1) If x-y=3 (2) then solve by elimiation x+y=9 x-y=3 - + - 2y=6 y=6/2 y= 3 putting value of y=3 in (2) x- 3=3 x=3+3=6 . . . the number= 63 If y-x=3 (3) by elimination x+y=9/-x+y= 3 2y= 12 y= 12/2=6 putting y=6 in(1) x+6=9 x=9-6=3 . . . the number=36 hence, the sum of these numbers are. 63 + 36= 99 and. 36+63=99. Ans.
  • 1 answers

Sia ? 6 years, 7 months ago

Get RD Sharma Solution here : <a href="https://mycbseguide.com/course/cbse-class-10-mathematics/1202/">https://mycbseguide.com/course/cbse-class-10-mathematics/1202/</a>

  • 1 answers

Mohit Malik Jaat 6 years, 7 months ago

Please send me the details of the compartment exam paper 2019 cbse
  • 1 answers

Sia ? 6 years, 7 months ago

Let the numerator and denominator of the fraction be x and y respectively.
Then,
Fraction= {tex} \frac { x } { y }{/tex}
It  is given that
Denominator = 2 (Numerator) + 4
{tex}\Rightarrow{/tex} {tex}y = 2x + 4 {/tex}
{tex}\Rightarrow{/tex}{tex}2x - y + 4 =0{/tex}
According to the given condition, we have
{tex}y - 6 = 12(x - 6){/tex}
{tex}\Rightarrow{/tex} {tex}y - 6 =12x -72{/tex}
{tex}\Rightarrow{/tex} {tex}12x - y - 66 =0{/tex}
Thus, we have the following system of equations
2x - y + 4 =0 ............(i)
12x - y -66 =0 .............(ii)
Subtracting equation (i) from equation (ii), we get
10x - 70 =0 {tex}\Rightarrow{/tex} x = 7
Putting x = 7 in equation (i), we get
14 - y + 4 =0 {tex}\Rightarrow{/tex} y = 18
Hence, required fraction ={tex}\frac { 7 } { 18 }.{/tex}

  • 2 answers

Nitesh Kumar 6 years, 7 months ago

Arithmetic progression, Geometry, Trigonometry, Mensuration

Krrishiv Boopathi 6 years, 7 months ago

Trigonometry, triangles, circle
  • 1 answers

Sia ? 6 years, 7 months ago

Let the ten's and unit digit be y and x respectively.
So the number is 10y + x
The number when digits are reversed becomes 10x + y
So, 7(10x + y) = 4(10y + x)
or, 70x+ 7y= 40y + 4x
or, 70x - 4x = 40y - 7y
or 66x = 33y
{tex} \Rightarrow {/tex} 2x = y .....(i)
The difference of the digits is 3
y - x= 3
2x - x = 3
x = 3
x = 3 and y = 6
Hence the number is 63

  • 1 answers

Sia ? 6 years, 7 months ago

We have equation 
{tex}a + b p ^ { \frac { 1 } { 3 } } + c p ^ { \frac { 2 } { 3 } } = 0{/tex} ...(i)
Multiplying both sides by {tex}p ^ { \frac { 1 } { 3 } }{/tex}in eq(i), we get
{tex}a p ^ { \frac { 1 } { 3 } } + b p ^ { \frac { 2 } { 3 } } + c p = 0{/tex} ...(ii)
Multiplying (i) by b and (ii) by c, we get
{tex}ab+b^2p^\frac13+bcp^\frac23=0{/tex} .......(iii) 

{tex}acp^\frac13+bcp^\frac23+c^2p=0{/tex} .......(iv).

subtracting equation (iv) from equation (iii) we get 

{tex}ab+b^2p^\frac13+bcp^\frac23-acp^\frac13-bcp^\frac23-c^2p=0{/tex}  

{tex}\Rightarrow\left(b^2p^\frac13-acp^\frac13\right)+\left(ab-c^2p\right)=0{/tex}
{tex}\Rightarrow \quad \left( b ^ { 2 } - a c \right) p ^ \frac{1}{3} + a b - c ^ { 2 } p = 0{/tex}
{tex}\Rightarrow \quad b ^ { 2 } - a c = 0 \text { and } a b - c ^ { 2 } p = 0 \quad \left[ \because p ^ { 1 / 3 } \text { is irrational } \right]{/tex}
{tex}\Rightarrow \quad b ^ { 2 } = a c \text { and } a b = c ^ { 2 } p{/tex}
{tex}\Rightarrow \quad b ^ { 2 } = a c \text { and } a ^ { 2 } b ^ { 2 } = c ^ { 4 } p ^ { 2 }{/tex}
{tex}\Rightarrow \quad a ^ { 2 } ( a c ) = c ^ { 4 } p ^ { 2 }{/tex} [Putting b2 = ac in a2b2 = c4p2]
{tex}\Rightarrow \quad a ^ { 3 } c - p ^ { 2 } c ^ { 4 } = 0{/tex}
{tex}\Rightarrow \quad \left( a ^ { 3 } - p ^ { 2 } c ^ { 3 } \right) c = 0{/tex}
{tex}\Rightarrow \quad a ^ { 3 } - p ^ { 2 } c ^ { 3 } = 0 , \text { or } c = 0{/tex}
Now, {tex}a ^ { 3 } - p ^ { 2 } c ^ { 3 } = 0{/tex}
 {tex}\Rightarrow p^2=\left(\frac ab\right)^3{/tex} 

cube root both side we get 

{tex}\left(p^2\right)^\frac13=\frac{a}{b}{/tex}  

{tex}\left(p^\frac13\right)^2=\frac{a}{b}{/tex}

this is not possible as {tex}p ^ { 1 / 3 }{/tex} is irrational and {tex}\frac { a } { b }{/tex} is rational.
{tex}\therefore \quad a ^ { 3 } - p ^ { 2 } c ^ { 3 } \neq 0{/tex}
Hence, c = 0
Putting c = 0 in b2 = ac = 0, we get b = 0
Putting b = 0 and c = 0 in equation (i) {tex}a + b p ^ { 1 / 3 } + c p ^ { 2 / 3 } = 0{/tex}   

a + 0 +0 = 0, we get a = 0
Hence, a = b = c = 0.

  • 1 answers

Sia ? 6 years, 7 months ago

By Euclid’s division lemma, we have
a = bq + r; 0 ≤ r < b
For a = n and b = 5, we have
n = 5q + r …(i)
Where q is an integer
and 0 ≤ r < 5, i.e. r = 0, 1, 2, 3, 4.
Putting r = 0 in (i), we get
n = 5q
⇒ n is divisible by 5.
n + 4 = 5q + 4
⇒ n + 4 is not divisible by 5.
n + 8 = 5q + 8
⇒ n + 8 is not divisible by 5.
n + 12 = 5q + 12
⇒ n + 12 is not divisible by 5.
n + 16 = 5q + 16
⇒ n + 16 is not divisible by 5.
Putting r = 1 in (i), we get
n = 5q + 1
⇒ n is not divisible by 5.
n + 4 = 5q + 5 = 5(q + 1)
⇒ n + 4 is divisible by 5.
n + 8 = 5q + 9
⇒ n + 8 is not divisible by 5.
n + 12 = 5q + 13
⇒ n + 12 is not divisible by 5.
n + 16 = 5q + 17
⇒ n + 16 is not divisible by 5.
Putting r = 2 in (i), we get
n = 5q + 2
⇒ n is not divisible by 5.
n + 4 = 5q + 9
⇒ n + 4 is not divisible by 5.
n + 8 = 5q + 10 = 5(q + 2)
⇒ n + 8 is divisible by 5.
n + 12 = 5q + 14
⇒ n + 12 is not divisible by 5.
n + 16 = 5q + 18
⇒ n + 16 is not divisible by 5.
Putting r = 3 in (i), we get
n = 5q + 3
⇒ n is not divisible by 5.
n + 4 = 5q + 7
⇒ n + 4 is not divisible by 5.

n + 8 = 5q + 11
⇒ n + 8 is not divisible by 5.
n + 12 = 5q + 15 = 5(q + 3)
⇒ n + 12 is divisible by 5.
n + 16 = 5q + 19
⇒ n + 16 is not divisible by 5.
Putting r = 4 in (i), we get
n = 5q + 4
⇒ n is not divisible by 5.
n + 4 = 5q + 8
⇒ n + 4 is not divisible by 5.
n + 8 = 5q + 12
⇒ n + 8 is not divisible by 5.
n + 12 = 5q + 16
⇒ n + 12 is not divisible by 5.
n + 16 = 5q + 20 = 5(q + 4)
⇒ n + 16 is divisible by 5.
Thus for each value of r such that 0 ≤ r < 5 only one out of n, n + 4, n + 8, n + 12 and n + 16 is divisible by 5.

  • 1 answers

Ram Kushwah 6 years, 7 months ago

{tex}\begin{array}{l}\alpha+\beta+\gamma=-\frac ba\\\alpha\beta\gamma=-\frac ca\\\alpha\beta+\beta\gamma+\gamma\alpha=\frac da\\\\\end{array}{/tex}

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App