No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Ram Kushwah 6 years, 7 months ago

2x²-x-1=2x²-2x+x-1=2x(x-1)+(x-1)=(x-1)((2x+1)

and 4x²+8x+3.=4x²+6x+2x+3=2x(2x+3)+(2x+3)=(2x+3)(2x+1)

Here common factor=2x+1

hence HCF=2x+1

 

  • 1 answers

Sia ? 6 years, 6 months ago

 
In  {tex}\triangle {/tex}OQP,DE || OQ
{tex}\frac{{PE}}{{EQ}} = \frac{{PD}}{{DO}}{/tex} .....(i)
In {tex}\triangle {/tex}OPR,DF {tex} \bot {/tex} OR
{tex}\frac{{PD}}{{DO}} = \frac{{PF}}{{FR}}{/tex} .....(ii)
From (i) and (ii) , we get
{tex}\frac{{PE}}{{EQ}} = \frac{{PF}}{{FR}}{/tex}
{tex}\therefore {/tex} From {tex}\triangle {/tex}PQR
EF {tex} \bot {/tex} OR

  • 1 answers

Ram Kushwah 6 years, 7 months ago

(2x-1) (x-3)=(x+5)

2x2-x-6x+3=x+5

2x2-8x-2=0

x2-4x-1=0

this is a quadratic equation

  • 1 answers

Sia ? 6 years, 6 months ago

Given linear equation is
(3k + 1)x + 3 y - 2 = 0 .......... (i)
(k2 + 1)x + (k - 2)y - 5 = 0 ............ (ii)
Compare with a1x + b1y + c = 0 and a2x + b2y and c2 = 0
a1 = 3k + 1 , b1 = 3 , c1 = -2
and a2 = k2+ 1 , b2 = k - 2, c2 = -5
The given system of equations will have no solution, if
{tex} \frac { a_1 } { a_2 } = \frac { b_1 } { b_2} \neq \frac { c_1 } { c_2 }{/tex}
{tex} \frac { 3 k + 1 } { k ^ { 2 } + 1 } = \frac { 3 } { k - 2 } \neq \frac { - 2 } { - 5 }{/tex}
{tex}\Rightarrow \quad \frac { 3 k + 1 } { k ^ { 2 } + 1 } = \frac { 3 } { k - 2 } \text { and } \frac { 3 } { k - 2 } \neq \frac { 2 } { 5 }{/tex}
Now, {tex}\frac { 3 k + 1 } { k ^ { 2 } + 1 } = \frac { 3 } { k - 2 }{/tex}
{tex}\Rightarrow{/tex} (3k + 1)(k - 2)=3(k2 + 1)
{tex}\Rightarrow{/tex} 3k2 - 5k - 2 =3k2 + 3
{tex}\Rightarrow{/tex} -5k - 2 =3
{tex}\Rightarrow{/tex} -5k = 5
{tex}\Rightarrow{/tex} k = -1
Clearly, {tex}\frac { 3 } { k - 2 } \neq \frac { 2 } { 5 }{/tex} for k = -1.
Hence, the given system of equations will have no solution for k = -1.

  • 1 answers

Sia ? 6 years, 6 months ago

Let the polynomial be ax2 + bx + c
and its zeroes be {tex}\alpha{/tex} and {tex}\beta{/tex}
Then, {tex}\alpha + \beta = \frac { 1 } { 4 } = - \frac { b } { a } \text { and } \alpha \beta = - 1 = \frac { c } { a }{/tex}
If a = 4, then b = -1 and c = -4
So, one quadratic polynomial which files
the given conditions is 4x2 - x - 4
Or
If {tex}\alpha{/tex} and {tex}\beta{/tex} zeroes of the polynomials then standard form quadratic polynomial is given by
{tex}x ^ { 2 } - ( \alpha + \beta ) x + \alpha \beta{/tex}
Let {tex}\alpha = \frac { 1 } { 4 } \text { and } \beta = - 1{/tex}
Now,
{tex}= x ^ { 2 } - ( \alpha + \beta ) x + \alpha \beta{/tex}
{tex}= x ^ { 2 } - \left( \frac { 1 } { 4 } \right) x + ( - 1 ){/tex}
{tex}= \frac { 1 } { 4 } \left( 4 x ^ { 2 } - x - 4 \right){/tex}
Required polynomial is 4x2 - x - 4

  • 1 answers

Rajan Kumar Pasi 6 years, 7 months ago

Solution: Here is a sample diagram related to the given question. 

               Given : {tex}\huge \angle A=\angle Q \space ; \space \space \space \angle B=\angle R{/tex}                            Thus , {tex}\huge \angle C=\angle P {/tex}


               Hence, {tex}\huge \triangle ABC\cong \triangle QRP {/tex}

               Now,  (i) is not possible and (ii), (iii), (iv) are possible conditions

  • 1 answers

Rajan Kumar Pasi 6 years, 7 months ago

Question: if {tex}\large \alpha \space and \space \beta{/tex} are the zeros of {tex}\large x^2 + 5 x + 5{/tex} then find the value of: (i)    {tex}(\alpha -1)+(\beta -1){/tex},(ii) {tex}\large \frac {\alpha} {\beta} +\frac { \beta} { \alpha}{/tex}

Solution: Roots of the equation    {tex}\huge x^2 + 5 x + 5 = {\frac {-5\pm \sqrt 5}{2}}{/tex}

                Thus,   {tex}\huge \alpha = {\frac {-5+ \sqrt 5}{2}} \space , \space \beta = {\frac {-5- \sqrt 5}{2}}{/tex}

                Now,  (i) {tex}\huge (\alpha -1)+(\beta -1) \space = \space (\alpha+\beta-2) \space = \space {\frac {-5+ \sqrt 5}{2}} + {\frac {-5- \sqrt 5}{2}} - 2{/tex} 

                         {tex}\huge \implies {\frac {-5+ \sqrt 5 -5-\sqrt 5}{2}} - 2{/tex}             {tex}\huge \implies {\frac {-10}{2}} - 2{/tex}

                         {tex}\huge \implies {\frac {-10-4}{2}} {/tex}          {tex}\huge \implies {\frac {-14}{2}} {/tex}       {tex}\huge \implies\boxed{ -7}{/tex}

 

 

                Now,  (i) {tex}\huge {\frac {\alpha}{\beta}}+{\frac {\beta} {\alpha}} \space = \frac{\alpha ^2 + \beta ^2}{\alpha \beta} {/tex} 

                         {tex}\large \implies Since, (i)\space The \space sum \space of \space zeroes, \space \alpha+\beta=5 ,(-b/a)\space \space \space ;\space \space \space (ii)\space The \space product \space of \space zeroes, \space \alpha\beta = 5, \space \space (c/a){/tex}  

{tex}\large \implies (i) \space\alpha+\beta=5\\ (squaring\space both\space sides\space of\space the\space equation)\\ \implies \alpha^2+2\alpha\beta+\beta^2=25\\ \implies \alpha^2+\beta^2=25-2\alpha\beta\\ (But\space (ii)\space \alpha\beta=5)\\ \therefore\space \alpha^2+\beta^2=25-2\times 5\\ \implies \alpha^2+\beta^2=25-10 \\ \implies \boxed{\alpha^2+\beta^2= 15}{/tex} {tex}\huge \implies\therefore \frac{\alpha^2+\beta^2}{\alpha\beta} \\ \huge \implies \frac{15}{5} \\ \huge \implies \boxed3{/tex}

     

  • 1 answers

Rajan Kumar Pasi 6 years, 7 months ago

Here is the international place value chart

  • 0 answers
  • 1 answers

Ram Kushwah 6 years, 7 months ago

Let the first terms are a and b

then their difference 100th terms=

=(a+99d)-(b+99d)=100

a-b=100

now difference 1000th terms

=a+999d-(b+999d)

=a-b=100

  • 1 answers

Ram Kushwah 6 years, 7 months ago

Buy hindi medium book

  • 1 answers

Yogita Ingle 6 years, 7 months ago

Given √2 is irrational number.
Let √2 = a / b wher a,b are integers b ≠ 0
we also suppose that a / b is written in the simplest form
Now √2 = a / b ⇒ 2 = a2 / b2 ⇒   2b2 = a2
∴ 2b2 is divisible by 2
⇒  a2 is divisible by 2    
⇒  a is divisible by 2  
∴ let a = 2c
a2 = 4c2 ⇒ 2b2 = 4c2 ⇒ b2 = 2c2
∴ 2c2  is divisible by 2
∴ b2  is divisible by 2
∴ b  is divisible by 2
∴a are b   are  divisible by 2 .
this contradicts our supposition that a/b is written in the simplest form
Hence our supposition is wrong
∴ √2 is irrational number.

  • 1 answers

Rajan Kumar Pasi 6 years, 7 months ago

This is Q.4 of Exercise 13.1, you have to understand the language of the question and solve it properly.
Its answer is 7cm for the greatest diameter and the Total Surface Area of the solid will be 332.5 cm2.


The base area of the hemisphere is subtracted because it is hidden and is not visible from outside so we cant cover it.

  • 2 answers

Abcd Singh ?? 6 years, 7 months ago

Ooo mr. Whatever the hcf is 2 so first check then comment i have already got the hcf -8 but the answer is not correct so i had asked just behave like a friend don't be rude bro we are here to help each other ........??

Rajan Kumar Pasi 6 years, 7 months ago

Oh my god !! seems like you haven't practiced successive division. It is soo easy.
{tex}\huge 520 = 92\times5+50\\\space\space \huge 92= 50\times 1 + 42\\\space\space \huge 50=42\times1+8\\\space\space \huge 42=\space8\times5+2\\\space\space \space\space\huge 8= \space2\times4+0{/tex}

Here we ended up at 8, soo its divisor will be our HCF i.e. {tex}\large\boxed2{/tex}
 

  • 1 answers

Yogita Ingle 6 years, 7 months ago

5/x - 3/y = 2
(5y - 3x)/xy = 2
5y - 3x = 2xy

  • 2 answers

Sia ? 6 years, 7 months ago

Prime factorization:
{tex}144 = 2 ^ { 4 } \times 3 ^ { 2 }{/tex}
{tex}198 = 2 \times 3 ^ { 2 } \times 11{/tex}
HCF = product of smallest power of each common prime factor in the numbers {tex}= 2 \times 3 ^ { 2 } = 18{/tex}

James Darwing 6 years, 7 months ago

HCF(144,198) 198 = 144×1+54 144 = 54×2+36 54 = 36 ×1 + 18 36 = 18 ×2 +0 Therefore HCF (144,198) =18
  • 2 answers

Sia ? 6 years, 7 months ago

Suppose {tex}\sqrt [ 3 ] { 6 }{/tex} be rational number and {tex}\sqrt [ 3 ] { 6 } = \frac { a } { b }{/tex} where {tex}a\ and\ b{/tex} are co-prime and {tex}b\ne0{/tex}
{tex}\Rightarrow ( \sqrt [ 3 ] { 6 } ) ^ { 3 } = \frac { a ^ { 3 } } { b ^ { 3 } }{/tex}

{tex}\Rightarrow 6 = \frac { a ^ { 3 } } { b ^ { 3 } } {/tex}

{tex}\Rightarrow 6 . b ^ { 3 } = a ^ { 3 }{/tex}
{tex}\Rightarrow {/tex} {tex}a^3{/tex} is divisible by {tex}6{/tex} {tex}\Rightarrow{/tex} {tex}a{/tex} is divisible by {tex}6{/tex}.
Let {tex}a = 6c{/tex}
{tex}6b^3 = (6c)^3{/tex}
{tex}\Rightarrow \quad b ^ { 3 } = 36 c ^ { 3 }{/tex}
{tex}\Rightarrow {/tex} {tex}b^3{/tex} is divisible by {tex}6{/tex} {tex}\Rightarrow {/tex} {tex}b{/tex} is  divisible by {tex}6{/tex}.
{tex}\Rightarrow {/tex} {tex}a\ and\ b{/tex} have a common factor i.e, {tex}6{/tex}
{tex}\Rightarrow {/tex} {tex}a\ and\ b{/tex} are not co-prime which is a contradiction
{tex}\therefore \sqrt [ 3 ] { 6 }{/tex} is an irratonal.

Neha Rathore 6 years, 7 months ago

Is irrational
  • 3 answers

.. .. 6 years, 7 months ago

Mr. Topper came?

Kung Fu ?? 6 years, 7 months ago

Mqny values of k are there

Kung Fu ?? 6 years, 7 months ago

1,2
  • 1 answers

Ram Kushwah 6 years, 7 months ago

f(x)=x2-3x-2

an b are zeros 

so a+b=3,ab=-2

now if the zeros are 1/2a+b and 1/2b+a

{tex}\begin{array}{l}\frac1{2a+b}+\frac1{2b+a}=\frac{2a+b+2b+a}{(2a+b)(2b+a)}=\frac{3(a+b)}{(2a+b)(2b+a)}\\=\frac{3(3)}{4ab+ab+2a^2+2b^2}=\frac9{5\ast(-2)+2\lbrack\;(a+b)^2-2ab)}\\=\frac9{-10+2\ast(9-2(-2)\rbrack}=\frac9{-10+2\ast(9+4)}=\frac9{-10+26}=\frac9{16}\\\\\end{array}{/tex}

{tex}\begin{array}{l}Product\;of\;zeros=\frac1{2a+b}\times\frac1{2b+a}=\frac1{(2a+b)(2b+a)}=\frac1{(2a+b)(2b+a)}\\=\frac1{4ab+ab+2a^2+2b^2}=\frac1{5\ast(-2)+2\lbrack\;(a+b)^2-2ab)}\\=\frac1{-10+2\ast(9-2(-2)\rbrack}=\frac1{-10+2\ast(9+4)}=\frac1{-10+26}=\frac1{16}\\\\\end{array}{/tex}

hence the polynomial

=x2-(9/16)x+1/16

or 16x2-9x+1

  • 1 answers

Rajan Kumar Pasi 6 years, 7 months ago

Hahaha, oh my god!!!, don't you think this is too much, you are not studying properly
{tex}\large p(x):x^3 -x^2+6x-5\\ putting, \space x=2\\ p(2):(2)^3-(2)^2+6\times2-5\\ p(2):8-4+12-5\\ p(2):\boxed {11}{/tex}

You just only have to replace '{tex}\large x {/tex}'  by the value given and perform the arithmetic operations.
Now, after seeing this, don't forget it.

 

And please write your qeustions properly while asking.

a+)
  • 1 answers

Abcd Singh ?? 6 years, 7 months ago

What is this bro type the question first
  • 1 answers

Sia ? 6 years, 7 months ago

Let {tex} \alpha{/tex} and {tex} \frac { 1 } { \alpha }{/tex} be the zeros of (a+ 9)x+ 13x + 6a.
Then, we have
{tex} \alpha \times \frac { 1 } { \alpha } = \frac { 6 a } { a ^ { 2 } + 9 }{/tex}
⇒ 1 = {tex} \frac { 6 a } { a ^ { 2 } + 9 }{/tex}
⇒ a2 + 9 = 6a
⇒ a2 - 6a + 9 = 0
⇒ a2 - 3a - 3a + 9 = 0
⇒ a(a - 3)  - 3(a - 3) = 0
⇒ (a - 3) (a - 3) = 0
⇒ (a - 3)= 0
⇒ a - 3 = 0
⇒ a = 3
So, the value of a in given polynomial is 3.

  • 0 answers
  • 1 answers

Ashmita Das 6 years, 7 months ago

a2 + b2 = (a+b)2 -2ab

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App