No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Mugdha Kumari 6 years, 5 months ago

SinA (1+sinA/cosA)+cosA(1+cos/sin). =sinA(cosA+sinA/cosA)+cos(sin+cos/sinA). =sinA+cosA(sin/cosA+cosA/sinA). =(SinA+cosA)(sin^2A+cos^2A/sinA×cosA). =sinA+cosA/sinA×cosA. =1/cosA+1/sinA. =secA+cosecA. Proved...
  • 1 answers

Khushi Boora 6 years, 5 months ago

HCF =1 LCM = product of p and (p+1)
  • 1 answers

Sia ? 6 years, 5 months ago

Let the fraction be {tex}\frac{x}{y}{/tex}
According to the question, the fraction becomes {tex}\frac{1}{3}{/tex} when 2 is subtracted from the numerator.
{tex}\therefore{/tex} {tex}\frac{x-2}{y}{/tex} = {tex}\frac{1}{3}{/tex} 
By cross multiplying, we get
{tex}\Rightarrow 3x -6 = y{/tex}...(i)
According to the question, the fraction becomes {tex}\frac{1}{2}{/tex} when 1 is subtracted from the denominator.
{tex}\therefore{/tex}{tex}\frac{x}{y-1}{/tex} = {tex}\frac{1}{2}{/tex} 
By cross multiplying, we get
{tex}\Rightarrow 2x = y-1{/tex}....(ii)
Substituting (i) in (ii), we get
{tex} \Rightarrow 2x = 3x-6 -1 \\\Rightarrow x =7{/tex}
Substituting x in (i), we get
{tex}\Rightarrow 21-6 = y \\\Rightarrow y=15{/tex}
{tex}\therefore x = 7, y = 15{/tex}
{tex}\therefore{/tex} Required fraction if {tex}\frac{7}{15}.{/tex} 

  • 2 answers

Sia ? 6 years, 5 months ago

Let f(x)= x2 + 11x + k
If -3 is zero of f(x) then f(-3)=0
(-3)2 + 11{tex}\times{/tex}(-3) + k = 0
9 - 33 + k = 0
- 24 + k = 0
k = 24

Khushi Boora 6 years, 5 months ago

Putting x = 3 9 + 33 + k = 0 k = -42
  • 0 answers
  • 1 answers

Pavneet Kaur 6 years, 5 months ago

2×2×2×3×13
  • 10 answers

?? .. 6 years, 5 months ago

????

Riyaaaaaaaa ? 6 years, 5 months ago

?...??

?? .. 6 years, 5 months ago

Gyi?

?? .. 6 years, 5 months ago

Dekh lo sad ke baad happy vala emoji bhi hai na...bs ab 3 days aur phir na mai yaha aungi aur na koi hurt hoga

?? .. 6 years, 5 months ago

Sad nahi hu mai.."virtual frnds ke liye kaisa sad hona"..yeh mujhe kisi ne sikhaya hai aur ab mai yahi follow karungi bs

Sejal Kathait?????? 6 years, 5 months ago

Yapp

?? D ?? 6 years, 5 months ago

Why r u so sad K. Bestie?

?? .. 6 years, 5 months ago

Diya

?? .. 6 years, 5 months ago

????

?? D ?? 6 years, 5 months ago

What's the ques.?????.?can u plz write this in English or in hindi!!??
  • 1 answers

Sia ? 6 years, 5 months ago

Check last year papers here : https://mycbseguide.com/cbse-question-papers.html

  • 1 answers

?? .. 6 years, 5 months ago

Cant provide you here...u could refer google
  • 2 answers

Sia ? 6 years, 5 months ago


Given: {tex}\triangle {/tex} ABC {tex} \sim {/tex}{tex}\triangle {/tex}DEF
AM
{tex} \bot {/tex} BC and DN {tex} \bot {/tex} EF
To prove:{tex}\frac{{area\vartriangle ABC}}{{area\vartriangle DEF}} = \frac{{A{M^2}}}{{D{N^2}}}{/tex}
proof::{tex}\frac{{area\vartriangle ABC}}{{area\vartriangle DEF}} = \frac{{A{B^2}}}{{D{E^2}}}{/tex}................[Area theorem]
In {tex}\triangle {/tex} ABM and DEN 
{tex}\angle{/tex} ABM and {tex}\angle{/tex} DEN [ {tex}\triangle {/tex} ABC {tex} \sim {/tex} {tex}\triangle {/tex}DEF]
{tex}\angle{/tex}AMB = {tex}\angle{/tex}DNE [90o each]
{tex}\Rightarrow {/tex} {tex}\triangle {/tex}ABM {tex} \sim {/tex}{tex}\triangle {/tex}DEN [AA similarity]
{tex}\therefore {/tex} {tex}\frac{{AB}}{{DE}} = \frac{{AM}}{{DN}}{/tex}
{tex}\Rightarrow {/tex} {tex}\frac{{A{B^2}}}{{D{E^2}}} = \frac{{A{M^2}}}{{D{N^2}}}{/tex}  .....(ii)
From (i) and (ii) we get

{tex}\frac{{area\vartriangle ABC}}{{area\vartriangle DEF}} = \frac{{A{M^2}}}{{D{N^2}}}{/tex}.

Baby Sahoo 6 years, 5 months ago

I can't understand
  • 2 answers

Sia ? 6 years, 5 months ago

Let the fraction be {tex}\frac{x}{y}{/tex}, Then, according to the question,
{tex}\frac{{x - 1}}{y} = \frac{1}{3}{/tex} ...(1)
{tex}\frac{x}{{y + 8}} = \frac{1}{4}{/tex} ...(2)
{tex}\Rightarrow{/tex} 3(x - 1) = y ...(3)
4x = y + 8 = ...(4)
{tex}\Rightarrow{/tex} 3x - y - 3 = 0 ...(5)
4x - y - 8 = 0 ...(6)
To solve the equation (5) and (6) by cross multiplication method
We draw the diagram below;

Then, {tex}\frac{x}{{( - 1)( - 8) - ( - 1)( - 3)}} = \frac{y}{{( - 3)(4) - ( - 8)(3)}}{/tex}{tex} = \frac{1}{{(3)( - 1) - (4)( - 1)}}{/tex}
{tex}\Rightarrow \frac{x}{{8 - 3}} = \frac{y}{{ - 12 + 24}} = \frac{1}{{ - 3 + 4}}{/tex}
{tex}\Rightarrow \frac{x}{5} = \frac{y}{{12}} = \frac{1}{1}{/tex}
{tex}\Rightarrow{/tex} x = 5 and y = 12
Hence, the required fraction is {tex}\frac{5}{{12}}{/tex}.
Verification :substituting x = 5, y = 12
We find that both the equations (1) and (2) are satisfied as shown below:
{tex}\frac{{x - 1}}{y} = \frac{{5 - 1}}{{12}} = \frac{4}{{12}} = \frac{1}{3}{/tex}
{tex}\frac{x}{{y + 8}} = \frac{5}{{12 + 8}} = \frac{5}{{20}} = \frac{1}{4}{/tex}
Hence, the solution we have got is correct.

Pavneet Kaur 6 years, 5 months ago

Let x be the numerator and y be the denominator A.T.Q x-1/y=1/3 x/y+8=1/4 By cross multiplication =3 (x-1)=y &4x=y+8 =3x-3=y &4x=y+8 =3x-y=3-------(1) &4x-y=8--------(2) From (1) x=3+y/3-------(3) Put x=3+y/2 in (2) we get 4 (3+y/3)=8 =12+4y/3-y=8 =12+4y/3-y=8 =12+4y-3y/3=8 =12+4y-3y=24 =12+y=24 =y=24-12 y=12 Put y=12 in (3) x=3+12/3=15/3=5 Therefore numerator(x)=5 And denominator (y)=12 :) hope its is helpful :)
  • 3 answers

Sejal Kathait?????? 6 years, 5 months ago

Don't know?

Riyaaaaaaaa ? 6 years, 5 months ago

By mistake...?

Rohit Sharma 6 years, 5 months ago

Pata nahi
  • 1 answers

Sia ? 6 years, 5 months ago

{tex}2x + 3y = 7{/tex}
{tex}(k - 1) x + (k + 2)y = 3k{/tex}
These are of the form
{tex}a_1x + b_1y + c_1 = 0 ,\ a_2x + b_2y + c_2 = 0{/tex}
where,
{tex}a_1= 2 ,\ b_1= 3,\ c_1 = -7,{/tex}
{tex}a_2=k - 1 \ ,b_2= k + 2 ,\ c_2 = -3k {/tex} for infinitely many solutions, we must have
{tex}\frac { a _ { 1 } } { a _ { 2 } } = \frac { b _ { 1 } } { b _ { 2 } } = \frac { c _ { 1 } } { c _ { 2 } }{/tex}
This hold only when
{tex}\frac { 2 } { k - 1 } = \frac { 3 } { k + 2 } = \frac { - 7 } { - 3 k }{/tex}
{tex}\frac { 2 } { k - 1 } = \frac { 3 } { k + 2 } = \frac { 7 } { 3 k }{/tex}
Now the following cases arises:
Case I:
{tex}\frac { 2 } { k - 1 } = \frac { 3 } { k + 2 }{/tex}
{tex}\Rightarrow{/tex}2(k + 2) = 3(k -1)

{tex}\Rightarrow{/tex}2k + 4= 3k - 3
{tex}\Rightarrow{/tex} k = 7
Case II:
{tex}\frac { 3 } { k + 2 } = \frac { 7 } { 3 k }{/tex}

{tex}\Rightarrow{/tex}7(k + 2) = 9k

{tex}\Rightarrow{/tex}7k + 14= 9k
{tex}\Rightarrow{/tex} k = 7
Case III:
{tex}\frac { 2 } { k - 1 } = \frac { 7 } { 3 k }{/tex}
{tex}\Rightarrow{/tex} 
7k - 7 = 6k
{tex}\Rightarrow{/tex} k = 7
For k = 7, there are infinitely many solutions of the given system of equations.

  • 3 answers

Sarika Yadav 6 years, 5 months ago

But I forgoted to put bar on 3178

Kartikey Upadhyay 6 years, 5 months ago

3178÷10000

Robbo Blb 6 years, 5 months ago

3178/10000
  • 4 answers

Jyoti Pant 6 years, 5 months ago

What you ask from rd sharma i can help you

Sejal Kathait?????? 6 years, 5 months ago

What you want ask?

Rahul Gupta 6 years, 5 months ago

Hii

?? .. 6 years, 5 months ago

What do u want exactly?
  • 8 answers

Jyoti Pant 6 years, 5 months ago

2× 3= 6

Rani Mishra ??? 6 years, 5 months ago

What a stupid question. It is a basic maths. Class I students will do better than you . Shame on you. You don't deserve to read in class X now . You deserve to read in class I

Pavneet Kaur 6 years, 5 months ago

6

Kartikey Upadhyay 6 years, 5 months ago

Answer is 6

Devna Baiju 6 years, 5 months ago

6

Tanmayee Upr 6 years, 5 months ago

6

Sarika Yadav 6 years, 5 months ago

Your answer is 6 . . . Hope it is helpful.

Rani Jha 6 years, 5 months ago

Your answer is 6.
  • 0 answers
  • 3 answers

Rani Jha 6 years, 5 months ago

Your answer is 8.

Pk . 6 years, 5 months ago

Am i right

Pk . 6 years, 5 months ago

8
  • 2 answers

Rani Jha 6 years, 5 months ago

You better prefer your book (NCERT).

Pk . 6 years, 5 months ago

You have to prefer ncert book
  • 0 answers
  • 1 answers

Rohit Sharma 6 years, 5 months ago

I v n gn m gn gnn ghh diy d whoop
  • 7 answers

Mohammed Daanish 6 years, 5 months ago

Thank you guys

Arsh Sandhu 6 years, 5 months ago

Eguation power has 2

Nikita Pokhariya 6 years, 5 months ago

If a equation is of the form ax^2+bx+c=0 and a is not 0 ,a,b,c are real numbers then the equation is a quadratic equation.

Tanmayee Upr 6 years, 5 months ago

If the eqation has highest power 2

Rani Jha 6 years, 5 months ago

Quadratic equation is the equation which have degree of 2 & In the form of 2 ax. +bx + c =0

Aryana Nayak 6 years, 5 months ago

If the given equation has the highest degree 2 then it is a quadratic equation.

Robbo Blb 6 years, 5 months ago

If the highest power of variable ( degree ) in an eqiation is 2 then it is a quadratic equation.
  • 1 answers

Sia ? 6 years, 5 months ago

LHS = {tex}\frac{\tan A}{\sec A-1}+\frac{\tan A}{\sec A+1}{/tex}
{tex}=\frac{\tan A(\sec A+1)+\tan A(\sec A-1)}{(\sec A-1)(\sec A+1)}{/tex}
{tex}=\frac{\tan A \cdot \sec A+\tan A+\tan A \sec A-\tan A}{\sec ^{2} A-1}{/tex}
{tex}=\frac{2 \tan A \sec A}{\tan ^{2} A}{/tex} [{tex}\because{/tex} {tex}(sec^2\theta  - 1) = tan^2\theta {/tex}]
{tex}=\frac{2 \sec A}{\tan A}{/tex}
{tex}=\frac{2 \frac{1}{\cos A}}{\frac{\sin A}{\cos A}}{/tex}
{tex}=2 \times \frac{1}{\cos A} \times \frac{\cos A}{\sin A}{/tex}
{tex}=\frac{2}{\sin \mathrm{A}}{/tex}
{tex}= 2 cosec\ A{/tex} = RHS

  • 0 answers
  • 1 answers

Mugdha Kumari 6 years, 5 months ago

Sin(90-40-dheta)-cos(40- dheta). =cos(40-dheta)-cos(40-dheta)
  • 1 answers

Swetha Suji 6 years, 5 months ago

x+1/x=2 The value of x is 1
  • 1 answers

?? D ?? 6 years, 5 months ago

What do u mean by _ symbol??????

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App