No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 6 years, 5 months ago

The given equations are:
{tex}\frac{x}{a}{/tex} + {tex}\frac{y}{b}{/tex} {tex}=(a+b){/tex} {tex}\Rightarrow{/tex}{tex}bx + ay = ab(a + b){/tex}
{tex}\Rightarrow{/tex}{tex}bx + ay - ab(a + b) = 0{/tex} ....(i)
and {tex}\frac { x } { a ^ { 2 } } + \frac { y } { b ^ { 2 } } = 2{/tex} {tex}\Rightarrow{/tex} {tex}b^2x + a^2y = 2a^2b^2{/tex} 
{tex}\Rightarrow{/tex}{tex} b^2x + a^2y -2a^2b^2 = 0{/tex}....(ii)
From eq. (i) and (ii), we get

{tex}\Rightarrow{/tex} {tex}\frac { x } { - 2 a ^ { 3 } b ^ { 2 } + a ^ { 3 } b ( a + b ) }{/tex} = {tex}\frac { - y } { - 2 a ^ { 2 } b ^ { 3 } + a b ^ { 3 } ( a + b ) }{/tex} = {tex}\frac { 1 } { a ^ { 2 } b - a b ^ { 2 } }{/tex}
{tex}\Rightarrow{/tex}{tex}\frac { x } { - a ^ { 3 } b ( 2 b - a - b ) }{/tex} = {tex}\frac { - y } { - a b ^ { 3 } ( 2 a - a - b ) }{/tex} = {tex}\frac { 1 } { a b ( a - b ) }{/tex}
{tex}\Rightarrow{/tex}{tex}\frac { x } { - a ^ { 3 } b ( b - a ) }{/tex} = {tex}\frac { y } { a b ^ { 3 } ( a - b ) }{/tex} = {tex}\frac { 1 } { a b ( a - b ) }{/tex}
{tex}\Rightarrow{/tex} {tex}x = \frac { a ^ { 3 } b ( a - b ) } { a b ( a - b ) }{/tex} = a2;  {tex}y = \frac { a b ^ { 3 } ( a - b ) } { a b ( a - b ) } = b ^ { 2 }{/tex}
The solution is {tex}x = a^2, y = b^2{/tex} .

  • 3 answers

Sandeepa Yadav 6 years, 5 months ago

Padhna aata nhi phle padh toh le likha kya

Rohit Sharma 6 years, 5 months ago

Don't use phone

Rohit Sharma 6 years, 5 months ago

So you go and practise for test paper
  • 2 answers

Sia ? 6 years, 5 months ago

x + y = 5 ...(1)
2x + 2y = 10 ...(2)
Here, a1 = 1, b1 = 1, c1 = -5
a2 = 2, b2 = 2, c2 = -10
We see that {tex}\frac{{{a_1}}}{{{a_2}}} = \frac{{{b_1}}}{{{b_2}}} = \frac{{{c_1}}}{{{c_2}}}{/tex}
Hence, the lines represented by the equations (1) and (2) are coincident.
Therefore, equations (1) and (2) have infinitely many common solutions, i.e., the given pair of linear equations is consistent.
Graphical Representation, we draw the graphs of the equations (1) and (2) by finding two solutions for each if the equations. These two solutions of the equations (1) and (2) are given below in table 1 and table 2 respectively.
For equation (1) x + y = 5 {tex}\Rightarrow{/tex} y = 5 - x
Table 1 of solutions

x 0 5
y 5 0

For equations (2) x + 2y = 10
{tex}\Rightarrow{/tex} 2y = 10 - 2x
{tex}\Rightarrow y = \frac{{10 - 2x}}{2} \Rightarrow{/tex} y = 5 - x
Table 2 of solutions

x 1 2
y 4 3

We plot the points A(0, 5) and B(5, 0) on a graph paper and join these points to form  the line AB representing the equation (1) as shown in the figure, Also, we plot the points C(1, 4) and D (2, 3) on the same graph paper and join these points to form the line CD representing the equation (2) as shown in the same figure.
 
In the figure we observe that the two lines AB and CD coincide.

Pk . 6 years, 5 months ago

Consistent
  • 1 answers

Mayank Sharma 6 years, 5 months ago

Let angle b be= x. So, angle c be 3x . angle a be x/2. A+B+c =180. X/2+x+3x = 180. X/2+4x=180.(do through out multiplication of 2 in eqn). X+8x=360. 9x=360. X =40. Putting the value of x in a and b and c. a= 40÷2=20. b = 40 . c= 40(3) = 120.
  • 0 answers
  • 0 answers
  • 0 answers
  • 1 answers

Mr. Spoidormon 6 years, 5 months ago

I can solve
  • 1 answers

Sia ? 6 years, 5 months ago

The given equations are
{tex}\frac { 1 } { 2 ( x + 2 y ) } + \frac { 5 } { 3 ( 3 x - 2 y ) } = - \frac { 3 } { 2 }{/tex}.....(1)
and {tex}\frac { 5 } { 4 ( x + 2 y ) } - \frac { 3 } { 5 ( 3 x - 2 y ) } = \frac { 61 } { 60 }{/tex}....(2)
Putting {tex}\frac 1{x+2y}{/tex}=u and {tex}\frac 1{3x-2y}{/tex}= v in equation (1) & equation (2) so that we may get two linear equations in the variables u & v as following:- 
{tex}\frac { 1 } { 2 } u + \frac { 5 } { 3 } v = - \frac { 3 } { 2 }{/tex}.....................(1)
{tex}\frac { 5 } { 4 } u - \frac { 3 } { 5 } v = \frac { 61 } { 60 }{/tex}.................(2)

Multiplying (1) by 36 and (2) by 100, we get
{tex}{/tex}
{tex}{/tex}
{tex}18u + 60v = -54{/tex}...............(3)
{tex}125 u - 60 v = \frac { 305 } { 3 }{/tex}.............(4)
Adding (3) and (4),we get
{tex}143 u = \frac { 305 } { 3 } - 54 = \frac { 305 - 162 } { 2 } = \frac { 143 } { 3 }{/tex}
{tex}\therefore \quad u = \frac { 1 } { 3 } = \frac { 1 } { x + 2 y }{/tex}
{tex}\therefore{/tex}{tex} x + 2y = 3{/tex}...........(5)
Putting value of u in (3), we get
{tex}1 + 10v = -9{/tex} (after dividing by 3)
{tex}\therefore 10 \mathrm { v } = - 10{/tex} or {tex}\mathrm { v } = - 1 {/tex}
{tex}\Rightarrow - 1 = \frac { 1 } { 3 x - 2 y }{/tex}
{tex}\Rightarrow 3 x - 2 y = - 1{/tex}......(6)
Adding (5) and (6), we get
{tex}4 x = 2 \quad{/tex}
{tex} \therefore x = \frac { 1 } { 2 }{/tex}
Putting value of x in (5),
{tex}\frac { 1 } { 2 } + 2 y = 3{/tex}
{tex} \text { or } 2 y = 3 - \frac { 1 } { 2 } = \frac { 5 } { 2 }{/tex}
{tex}\therefore \quad y = \frac { 5 } { 4 }{/tex}
The required solution is {tex}\mathrm { x } = \frac { 1 } { 2 } , \mathrm { y } = \frac { 5 } { 4 }{/tex}

  • 1 answers

Sia ? 6 years, 5 months ago

Point-slope form, standard form, and slope-intercept form.

  • 2 answers

Aditi Khetan 6 years, 5 months ago

Ok

Sejal Kathait?????? 6 years, 5 months ago

No
  • 1 answers

Akash Lal 6 years, 5 months ago

Find LCM of 48,60&72 

Which would be 720km.after covering 720km each they will meet,till then they all have covered two times the field

  • 1 answers

Akash Lal 6 years, 5 months ago

Please specify questions...are you talking about NCERT?

  • 0 answers
  • 1 answers

Pk . 6 years, 5 months ago

Yup
  • 1 answers

Pk . 6 years, 5 months ago

Consider equal sideof isoscelous right angle triangle be x Then hypotenous will be √2x Then apply the formula to find area of both triangle and compare it?????
  • 6 answers

Mugdha Kumari 6 years, 5 months ago

Since the factors of 13 and 15 are 1 hence the fhcf is 1

Pk . 6 years, 5 months ago

Hcf is highest common factor and there is no common factor other than 1 there So hcf is 1

Pk . 6 years, 5 months ago

Sorry lcm is 195 But hcf is 1?????

?Future C.A.? 6 years, 5 months ago

1

Shruti Jha 6 years, 5 months ago

HCF of 13 and 15 is 1.

Pk . 6 years, 5 months ago

195
  • 1 answers

Sejal Kathait?????? 6 years, 5 months ago

Where are the quadratic equation sis@?
  • 0 answers
  • 1 answers

Mugdha Kumari 6 years, 5 months ago

For unique solution, -1÷3kis not equal to 1÷2. Hence k is not equal to -2÷3
  • 2 answers

Shruti Jha 6 years, 5 months ago

let root 3 is rational number. root 3=p/q [where,p and q are integers,q is not equal to 0 and p and q are co-primes]. root 3q=p squaring both sides, 3q2 =p2...............[1] 3 divides p2 3 divides p.............[2] p2=3q2 p2=3m Put the value of p2 in eqn [1]. p2=3q2 [3m]2=3q2 9m2=3q2 3m2=q2 q2=3m2 3 divides q2 3 divides q [3] By eqn [2] and [3].... 3 is the common factor of both p and q . This is contradiction that and q are co-primes. Our assumption is wrong. Hence , root 3 is irrational number.

Sia ? 6 years, 5 months ago

 let us assume that {tex}\sqrt 3{/tex} be a rational number.

{tex}\sqrt { 3 } = \frac { a } { b }{/tex}, where a and b are integers and co-primes and b{tex} \neq{/tex}0
Squaring both sides, we have
{tex}\frac { a ^ { 2 } } { b ^ { 2 } } = 3{/tex}
or, {tex}a ^ { 2 } = 3 b ^ { 2 }{/tex}--------(i)
a2 is divisible by 3.
Hence a is divisible by 3..........(ii)
Let a = 3c ( where c is any integer)

squaring on both sides we get
(3c)2 = 3b2
9c2 = 3b2
b2 = 3c2
so b2 is divisible by 3
hence, b is divisible by 3..........(iii)
From equation(ii) and (iii), we have
3 is a factor of a and b which is contradicting the fact that a and b are co-primes.
Thus, our assumption that {tex}\sqrt 3{/tex} is rational number is wrong.
Hence, {tex}\sqrt 3{/tex} is an irrational number.

  • 1 answers

Sia ? 6 years, 5 months ago

When y = x

x

1

2

y

1

2

When 3y = x,

x

6

3

y

2

1

when x + y = 8 or y = 8 - x

x

4

5

y

4

3

 

  • 2 answers

Jayesh Panwar 6 years, 5 months ago

There is no competition in our school . Project is for holiday homework

Robbo Blb 6 years, 5 months ago

What type of math model is there any type of competition in your school? ?????

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App