No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 6 years, 5 months ago

= cos 37° cosec 53°
= cos(90° - 53°) cosec 53°
= sin 53° cosec 53°
= sin 53° . {tex}\frac{1}{sin 53^ \circ}{/tex}
= 1

  • 1 answers

Sia ? 6 years, 5 months ago

= tan260° + tan245°
= ({tex}\sqrt 3{/tex})2 + (1)2
= 3 + 1
= 4

  • 1 answers

Parthiv Patel 6 years, 5 months ago

Go to the solution option in maths subject option........
  • 1 answers

Pk . 6 years, 5 months ago

First part:1500 Second part is:3000
  • 2 answers

Kunja Bihari 6 years, 5 months ago

Smallest composite number 4 Smallest prime number 2.. So HCF equals 2..

Isha Trivedi 6 years, 5 months ago

4
  • 1 answers

Sia ? 6 years, 5 months ago

Let n = 4q + 1 (an odd integer)
{tex}\therefore \quad n ^ { 2 } - 1 = ( 4 q + 1 ) ^ { 2 } - 1{/tex}
{tex}= 16 q ^ { 2 } + 1 + 8 q - 1 \quad \text { Using Identity } ( a + b ) ^ { 2 } = a ^ { 2 } + 2 a b + b ^ { 2 }{/tex}
{tex}= 16{q^2} + 8q{/tex}
{tex}= 8 \left( 2 q ^ { 2 } + q \right){/tex}
= 8m, which is divisible by 8.

  • 1 answers

Sia ? 6 years, 5 months ago

Let n = 4q + 1 (an odd integer)
{tex}\therefore \quad n ^ { 2 } - 1 = ( 4 q + 1 ) ^ { 2 } - 1{/tex}
{tex}= 16 q ^ { 2 } + 1 + 8 q - 1 \quad \text { Using Identity } ( a + b ) ^ { 2 } = a ^ { 2 } + 2 a b + b ^ { 2 }{/tex}
{tex}= 16{q^2} + 8q{/tex}
{tex}= 8 \left( 2 q ^ { 2 } + q \right){/tex}
= 8m, which is divisible by 8.

  • 1 answers

Deepak Latesara 6 years, 5 months ago

As this expression can be simplified as 13(2*3*4*5*17+1) this shows that 13 is a factor of yhis expression and hence it is composite
  • 1 answers

Isha Trivedi 6 years, 5 months ago

Divide the f(x) with the product of two of its given zeroes and the fractorise the quotient by mid term splitting.
  • 1 answers

Sia ? 6 years, 5 months ago

Check revision notes to check formulae : https://mycbseguide.com/cbse-revision-notes.html

  • 1 answers

Sia ? 6 years, 5 months ago

We have the following equation,

 {tex}3x^2-5x+2k=0{/tex}

Putting x = -2
3(-2)2 - 5(-2) + 2k = 0
{tex}\Rightarrow{/tex} 12 + 10 + 2k = 0
{tex}\Rightarrow{/tex} 22 + 2k = 0
{tex}\Rightarrow{/tex} k = {tex}\frac{-22}{2}{/tex}

 {tex}\Rightarrow{/tex} k = -11

  • 1 answers

Sia ? 6 years, 5 months ago

Check syllabus here : https://mycbseguide.com/cbse-syllabus.html

  • 1 answers

Sia ? 6 years, 5 months ago

7 × 1 = 7
7 × 2 = 14
7 × 3 = 21
7 × 4 = 28
7 × 5 = 35
7 × 6 = 42
7 × 7 = 49
7 × 8 = 56
7 × 9 = 63
7 × 10 = 70

  • 0 answers
  • 1 answers

Shruti Jha 6 years, 5 months ago

LCM of 18 , 20, 9 is 180.
  • 2 answers

Ãkäsh Målhõträ 6 years, 5 months ago

x=17and y=10

Ãkäsh Målhõträ 6 years, 5 months ago

6x+5y=2(x+6y-1) 6x+5y=2x+12y-2 6x-2x+5y-12y=-2 4x-7y=-2 ------------------(1) Again,7x+3y+1=2(x+6y-2) 7x+3y+1=2x+12y-4 7x-2x+3y-12y=-4-1 5x-9y=-5 -------------------(2) Multiplying eqt.(1) by 5 and (2) by 4 20x-35y=-10 20x-36y=-20 ~~+~~~+~ y=10 Put y=10 in any eqt. 4x-7y=-2 4x-7×10=-2 4x=-2+70 x=68/4=17
  • 1 answers

Akhilesh Pandey 6 years, 5 months ago

First you compare both equation (X or Y) and then eliminate and solve
  • 2 answers

Shruti Jha 6 years, 5 months ago

Let root 3 is rational number. root3 =p/q ( where, p and q are integer , q is not equal to 0 and p and q are co-primes ). root 3q = p. Squaring both sides. 3p2=q2 (q square and p square)...... (i). 3 divides p2. 3 divides p.......... (ii). p2 = 3q2. p2 =3m. Put the value of p2. p2=3q2. (3m)2=3q2. 9m2=3q2. 3m2=q2. q2=3m2. 3 divides q2. 3 divides q.......... (iii). By eqn (ii) and (iii) 3 divides p and 3 divides also q. 3 is the common factor of p and q. This is contradiction because our assumption is wrong. Hence, root 3 is irrational number.

Shruti Jha 6 years, 5 months ago

2 or root 2
  • 1 answers

Sia ? 6 years, 5 months ago

Check syllabus here : https://mycbseguide.com/cbse-syllabus.html

  • 0 answers
  • 5 answers

Puja Sahoo? 6 years, 5 months ago

Bbye guys gd nyt sweet dreams

Raja Sahab? 6 years, 5 months ago

Or sab vadiya bhai

Raja Sahab? 6 years, 5 months ago

Accha

.. .? 6 years, 5 months ago

Raunak Pandey

Raja Sahab? 6 years, 5 months ago

Apka shubh naam
  • 3 answers

Mohammad Amaan 6 years, 5 months ago

I mean (x^2-5x+6) is answer

Mohammad Amaan 6 years, 5 months ago

x^2-(2+4)x+(2×4) X^2-5x+6 is answer.

Nilesh Bhardwaj 6 years, 5 months ago

Answer
  • 1 answers

Gaurav Seth 6 years, 5 months ago

96=56×1+40
56=40×1+16
40=16×2+8
16=8×2+0
HCF=8

404=8×50+4
8=4×2+0

HCF(56,96,404)=4
  • 1 answers

Gaurav Seth 6 years, 5 months ago

Let A , B and C are three vertices of

the triangle

( x1 , y1 ) = A ( 3 , - 7 )

( x2 , y2 ) = B ( - 8 , 6 )

( x3 , y3 ) = C ( 5 , 10 )

Centroid ( G )

= ( x1+x2+x3/3 , y1+y2+y3/3 )

= ( 3-8+5/3 , -7+6+10/3 )

= ( 0 , 9/3 )

= ( 0 , 3 )

G = ( 0 , 3 )
  • 1 answers

Sia ? 6 years, 3 months ago

According to question
PR = RQ or R is mid-point of PQ
Using mid-point formula x {tex}= \frac { x _ { 1 } + x _ { 2 } } { 2 }{/tex} and y {tex}= \frac { y _ { 1 } + y _ { 2 } } { 2 }{/tex}
{tex}\frac { b - 2 + 4 } { 2 }{/tex} = - 3
{tex}\Rightarrow{/tex} b + 2 = - 6 
{tex}\Rightarrow{/tex} b = - 8

  • 1 answers

Sia ? 6 years, 5 months ago

D = b2 - 4ac
{tex}= ( - 9 ( a + b ) ) ^ { 2 } - 4 \times 9 \times \left( 2 a ^ { 2 } + 5 a b + 2 a b ^ { 2 } \right){/tex}
= 81(a + b)2 - 36(2a2 + 5ab + 2b2)
= 9[9(a2 + b2 + 2ab - 8a2 - 20ab - 8b2)]
= 9[a2 + b2 - 2ab]
= 9(a - b)2
{tex}x = \frac { - b \pm \sqrt { D } } { 2 a } = \frac { 9 ( a + b ) \pm \sqrt { 9 ( a - b ) ^ { 2 } } } { 2 \times 9 }{/tex}
{tex}{ \Rightarrow x = 3 \frac { [ 3 ( a + b ) \pm ( a - b ) ] } { 2 \times 9 } }{/tex}
{tex}{ \Rightarrow x = \frac { ( 3 a + 3 b ) \pm ( a - b ) } { 6 } }{/tex}
{tex}\Rightarrow x = \frac { 3 a + 3 b + a - b } { 6 } \text { or } x = \frac { 3 a + 3 b - a + b } { 6 }{/tex}
{tex}\Rightarrow x = \frac { 4 a + 2 b } { 6 } \text { or } x = \frac { 2 a + 4 b } { 6 }{/tex}
{tex}\Rightarrow x = \frac { 2 a + b } { 3 } \text { or } x = \frac { a + 2 b } { 3 }{/tex}

  • 1 answers

Sia ? 6 years, 5 months ago

The systems of equations are:
5ax + 6by = 28 .......................(i)
3ax + 4by = 18 .......................(ii)
From (i) and (ii), we get
a1 = 5a, b1 = 6b, c1 = -(28)
a2 = 3a, b2 = 4b, c2 = -(18)
By cross multiplication method, we get
{tex}\frac{x}{{-108b +112b}} = \frac{{ - y}}{{ - 90a + 84a }} = \frac{1}{{20ab - 18ab}}{/tex}
{tex}\frac{x}{{4b}} = \frac{{ - y}}{{ - 6a}} = \frac{1}{{2ab}}{/tex}
Now, {tex}\frac{x}{{4b}} = \frac{1}{{2ab}} {/tex}
{tex}⇒ x = \frac{2}{a}{/tex}
And, {tex}\frac{{ - y}}{{ - 6a}} = \frac{1}{{2ab}} {/tex}
{tex}⇒ y = \frac{3}{b}{/tex}
Therefore the solution of the given system of equation is {tex}\frac{2}{a}{/tex} and {tex}\frac{3}{b}{/tex}.

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App