No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 6 answers

Sia ? 6 years, 5 months ago

15

Rakhee Swarnkar 6 years, 5 months ago

Its 15

#Aditi~ Angel???? 6 years, 5 months ago

15/-
15

Simar Bagga 6 years, 5 months ago

15

Kavita Raghav 6 years, 5 months ago

15
  • 1 answers

Sia ? 6 years, 5 months ago

Algorithm is a set of rules to be followed in calculations or other problem-solving operations, especially by a computer.

  • 1 answers

Sia ? 6 years, 5 months ago

Here we are having a=3
and d=15-3=12
Let nth term Tn =T21+120
so a+(n-1)d = a+20d+120
or (n-1){tex}\times{/tex}12 = 20 {tex}\times{/tex} 12+120
12n -12 = 240+120
12n = 372
{tex}\style{font-size:12px}{\text{n=}\frac{372}{12}=31}{/tex}
Hence, 31st term is the required term.

  • 5 answers

Iron Man 6 years, 5 months ago

y=0

Bhargav Parate 6 years, 5 months ago

y=0

Riya Shree Gupta 6 years, 5 months ago

4+2y=4 2y=4-4=0 2y=0 Y=-2

??Rupi.... ..?? 6 years, 5 months ago

2y=4-4 2y=0 Y =0

Pranav Bansal 6 years, 5 months ago

0
  • 1 answers

Sia ? 6 years, 5 months ago

Let a = 3q + r {tex}: 0 \leq r < 3{/tex} 
{tex}\therefore \quad a = 3 q ; \text { then } a ^ { 3 } = 27 q ^ { 3 } = 9 m ; \text { where } m = 3 q ^ { 3 }{/tex}
{tex}\text { when } a = 3 q + 1 ; \text { then } a = 27 q ^ { 2 } + 27 q ^ { 2 } + 9 q + 1{/tex}
{tex}= 9 \left( 3 q ^ { 3 } + 3 q ^ { 2 } + q \right) + 1{/tex}
{tex}= 9 m + 8 \quad \left( \text { where } m = 3 q ^ { 3 } + 3 q ^ { 2 } + q \right){/tex}
{tex}\text { when } a = 3 q + 2 ; \text { then } a ^ { 3 } = ( 3 q + 2 ) ^ { 2 }{/tex}
{tex}= 27 q ^ { 3 } + 54 q ^ { 2 } + 36 q + 8{/tex}
{tex}= 9 m + 8 \quad \left( \text { where } m = 3 q ^ { 3 } + 6 q ^ { 2 } + 4 q \right){/tex}
{tex}= 9 m + 8 \quad \left( \text { where } m = 3 q ^ { 3 } + 6 q ^ { 2 } + 4 q \right){/tex}
Hence, cubes of any positive integer is either of the from 9m, (9m + 1) or (9m + 8).

  • 1 answers

Harshad Patel 6 years, 5 months ago

Trinomial can not be factored
  • 1 answers

Harshad Patel 6 years, 5 months ago

3.69 (aprrox)....
  • 2 answers

??Rupi.... ..?? 6 years, 5 months ago

Do it by middle term splitting

Savita Suman 6 years, 5 months ago

Both positive
  • 2 answers

Raj Singh 6 years, 5 months ago

520

Suryah Medico 6 years, 5 months ago

1
  • 1 answers

Thangavel Vignesh 2 years, 10 months ago

yes i know
  • 1 answers

Sia ? 6 years, 3 months ago

Let P and Q be the points of trisection as shown below

Then, AP : PB = 1 : 2
and AQ : QB = 2 : 1


  1. Here, {tex}\frac{m_{1}}{m_{2}}=\frac{1}{2},{/tex} A(x1, y1) = (2, -3) and B(x2, y2) = (4, -1)
    For internally, {tex}P=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right){/tex}
    {tex}\Rightarrow \quad P=\left(\frac{1 \times 4+2 \times 2}{1+2}, \frac{1 \times(-1)+2 \times(-3)}{1+2}\right){/tex}
    {tex}\Rightarrow \quad P=\left(\frac{4+4}{3}, \frac{-1-6}{3}\right) \Rightarrow P=\left(\frac{8}{3}, \frac{-7}{3}\right){/tex}
  2. Here, {tex}\frac{m_{1}}{m_{2}}=\frac{2}{1}{/tex}, A(x1, y1) = (2, -3)
    and B(x2, y2) = (4, -1)
    For internally, {tex}Q=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right){/tex}

    {tex}\Rightarrow \quad Q=\left(\frac{2 \times 4+1 \times 2}{2+1}, \frac{2 \times(-1)+1 \times(-3)}{2+1}\right){/tex}
    {tex}\Rightarrow \quad Q=\left(\frac{8+2}{3}, \frac{-2-3}{3}\right) \Rightarrow Q=\left(\frac{10}{3}, \frac{-5}{3}\right){/tex}
  • 0 answers
  • 1 answers

Yogita Ingle 6 years, 5 months ago

0.2x + 0.3y = 1.3 ... (i)
0.4x + 0.5y = 2.3 ... (ii)
Solving equation (i), we get
0.2x = 1.3 – 0.3y
Dividing by 0.2, we get
x = 1.3/0.2 - 0.3/0.2
x = 6.5 – 1.5 y
Putting the value in equation (ii), we get
0.4x + 0.5y = 2.3
(6.5 – 1.5y) × 0.4x + 0.5y = 2.3
2.6 – 0.6y + 0.5y = 2.3
-0.1y = 2.3 – 2.6
= -0.3/-0.1
y = 3
Putting this value in equation (i) we get x = 2

= 2 and y = 3
  • 1 answers

Sia ? 6 years, 3 months ago

We know that, cos0°=1 =sin90°, sin45°=(1/√2)= cos45° & sin30°=(1/2)=cos60°, putting these values in the given expression, we get:-
{tex}\left( {\cos 0^\circ +\sin 45^\circ +\sin 30^\circ }\right)\left( {\sin 90^\circ -\cos 45^\circ +\cos 60^\circ } \right){/tex}
{tex} = \left( {1 + \frac{1}{{\sqrt 2 }} + \frac{1}{2}} \right)\left( {1 - \frac{1}{{\sqrt 2 }} + \frac{1}{2}} \right){/tex}
{tex} = \left( {\frac{{2\sqrt 2 + 2 + \sqrt 2 }}{{2\sqrt 2 }}} \right)\left( {\frac{{2\sqrt 2 - 2 + \sqrt 2 }}{{2\sqrt 2 }}} \right){/tex}
{tex} = \left( {\frac{{3\sqrt 2 + 2}}{{2\sqrt 2 }}} \right)\left( {\frac{{3\sqrt 2 - 2}}{{2\sqrt 2 }}} \right){/tex}
{tex} = \frac{{{{\left( {3\sqrt 2 } \right)}^2} - {{\left( 2 \right)}^2}}}{8}{/tex} [Identity (a + b)(a - b) = a2 - b2]
{tex} = \frac{{18 - 4}}{8}{/tex}
{tex} = \frac{{14}}{8} = \frac{7}{4}{/tex}

  • 1 answers

Ashish Mishra 6 years, 5 months ago

Yde37887
  • 5 answers

Raj Singh 6 years, 5 months ago

Some people are also saying that dhoni is going to retire after world Cup 2019

Itika Singhal 6 years, 5 months ago

And what about kohli's performance...?????

?Niharika Sharma ? 6 years, 5 months ago

Yeah??

Kavita Raghav 6 years, 5 months ago

Yes New Zealand take advantage of rainfall

Sneha Sharma 6 years, 5 months ago

Yesss. Coz of dhoni he underperformed
  • 1 answers

Raj Singh 6 years, 5 months ago

Oswal sample paper will be launch in October
  • 3 answers

Sia ? 6 years, 5 months ago

You can check the question paper pattern in syllabus here : https://mycbseguide.com/cbse-syllabus.html

Raj Singh 6 years, 5 months ago

20 marks of MCQ carring 1 marks each and remaining are of 2,3 and 5 marks

Raj Singh 6 years, 5 months ago

Yes
  • 2 answers

Mayank Sharma 6 years, 5 months ago

-10 is the product of zero.

Sneha Mehta 6 years, 5 months ago

The product of zeroes will be -10
  • 1 answers

Urja Patwary 6 years, 5 months ago

x+y=9_. Eq1 10x+y+27=10y+x 9x+27=9y x+3=y_ eq2 From eq1&2 x+3+x=9 2x+3=9 2x=6 x=3 y=6 10x+y=36
  • 1 answers

Anshika ??? 6 years, 5 months ago

Q=power of electron
  • 0 answers
  • 1 answers

Sia ? 6 years, 3 months ago

The given equation is {tex}ax^2 + bx + c = 0{/tex}
sin {tex}\alpha{/tex} and cos {tex}\alpha{/tex} are roots of the given equation.
{tex}\therefore{/tex} sin {tex}\alpha{/tex} + cos {tex}\alpha{/tex} = -{tex}\frac{b}{a}{/tex} ...(i)
and {tex}sin{/tex} {tex}\alpha{/tex}{tex}.cos{/tex} {tex}\alpha{/tex} = {tex}\frac{c}{a}{/tex}...(ii)
Squaring both sides of equation (i), 
{tex}\Rightarrow {/tex}(sin {tex}\alpha{/tex} + cos {tex}\alpha{/tex})2{tex}\frac { b ^ { 2 } } { a ^ { 2 } }{/tex}
{tex}\Rightarrow{/tex}{tex}sin^2{/tex} {tex}\alpha{/tex} {tex}+ cos^2{/tex} {tex}\alpha{/tex} + 2 sin {tex}\alpha{/tex}cos {tex}\alpha{/tex} = {tex}\frac { b ^ { 2 } } { a ^ { 2 } }{/tex}
{tex}\Rightarrow{/tex}1 + 2{tex}\frac{c}{a}{/tex} = {tex}\frac { b ^ { 2 } } { a ^ { 2 } }{/tex} {tex}\Rightarrow{/tex} {tex}\frac{a + 2c}{a}{/tex} = {tex}\frac { b ^ { 2 } } { a ^ { 2 } }{/tex}
{tex}\Rightarrow{/tex}{tex}a^2 + 2ac = b^2{/tex}

  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App