No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 2 answers

Aditya Shrivastvav 6 years, 5 months ago

Thanks

Neha Verma 6 years, 5 months ago

Sec 4A=sec(90°-(A-20°)) 4A=90°-A+20 4A=110-A 5A=110 A=110/5 A=22°
  • 5 answers

Sonali Shrivastava 6 years, 5 months ago

3075

Niraj Rajput 6 years, 5 months ago

3075

Deepak Singh 6 years, 5 months ago

3075

Barna Biswas 6 years, 5 months ago

3075

Maria Peter 6 years, 5 months ago

1
  • 2 answers

Simran Kaur 6 years, 5 months ago

X=31/3??

Simran Kaur 6 years, 5 months ago

Y=8??
  • 2 answers

Tanya Suryavanshi 6 years, 5 months ago

Thank u

Tec Om 6 years, 5 months ago

always let whatever is to find . and make equation according to question
  • 0 answers
  • 1 answers

Satyam Raj 6 years, 5 months ago

U can get solution from offliine RS Aggarawal solution app
  • 1 answers

Iron Man 6 years, 5 months ago

find value of any variable from eqation1 and put it into eqn 2
  • 1 answers

Fab 6 years, 5 months ago

Prepare the trigonometric ratios perfectly,the values of degrees and formulas Then you are able to solve any problem
  • 1 answers
Net pe search krle
  • 1 answers

Sia ? 6 years, 5 months ago

We have, {tex}asin\theta+bcos\theta=c{/tex}

On squaring both sides, we get

{tex}(asin\theta+bcos\theta)^2=c^2{/tex}

(a sin θ)2 + (b cos θ)2 + 2(a sin θ) (b cos θ) = c2

⇒ a2 sin2 θ + b2 cos2 θ + 2ab sin θ cos θ = c2

⇒ a2(1 – cos2 θ) + b2 (1 – sin2 θ) + 2 ab sin θ cos θ = c2    {tex}[\because sin^2\theta+cos^2\theta=1]{/tex}

⇒ a2 – a2 cos2 θ + b2 – b2 sin2 θ + 2ab sin θ cos θ = c2

⇒ –a2 cos2 θ – b2 sin2 θ + 2ab sin θ cos θ = c– a2 – b2    

Taking Negative common,

⇒ a2 cos2 θ + b2 sin2 θ – 2ab sin θ cos θ = a2 + b2 – c2

⇒ (a cos θ)2 + (b sin θ)2 – 2(a cos θ) (b sin θ) = a+ b2 – c2

{tex}(acos\theta-bsin\theta)^2=a^2+b^2-c^2{/tex}

{tex}acos\theta-bsin\theta{/tex}{tex}\pm \sqrt { a ^ { 2 } + b ^ { 2 } - c ^ { 2 } }{/tex} 

Hence proved,  {tex}acos\theta-bsin\theta{/tex}{tex}\sqrt{a^2+b^2-c^2}{/tex}

  • 0 answers
  • 1 answers

Sia ? 6 years, 3 months ago

The existing Mathematics examination is the Standard Level Examination.

  • 3 answers

Keshav Rajput 6 years, 3 months ago

Thanks

Mamta Panghal 6 years, 5 months ago

Yes

Iron Man 6 years, 5 months ago

yes
  • 2 answers

Shivam Kumar 6 years, 5 months ago

Xh v hubbub

Iron Man 6 years, 5 months ago

conceptual and basic thing
  • 2 answers

?Niharika Sharma ? 6 years, 5 months ago

Where is the given figure?????

Iron Man 6 years, 5 months ago

figure?
  • 0 answers
  • 3 answers

Sagar Yadav 6 years, 5 months ago

22338

Iron Man 6 years, 5 months ago

by formula hcf* lcm= product of two numbers.

Pronay Dey 6 years, 5 months ago

Since, LCM(a,b) * HCF(a,b) = a*b Let LCM (306,657) = x So, x * 9 = 306 * 657 x = 24538
  • 2 answers

Kajol Chanchlani 6 years, 5 months ago

My ?

Rohit Guha Roy ? 6 years, 5 months ago

My
  • 2 answers

Nikhil Sikarwar 6 years, 5 months ago

So we can select the any part of maths

Iron Man 6 years, 5 months ago

In the exam of 2020 it is found that maths will be divided in two parts.First standard and second basic for standard maths book willcremain same as I have listened and for basic some chapters will silent .
  • 0 answers
  • 1 answers

Iron Man 6 years, 5 months ago

where is polynomial for which you are asking
  • 1 answers

Sia ? 6 years, 5 months ago

Let a be the first term and d be the common difference of the given AP. Then,
S= sum of first m terms of the given AP;
S= sum of first n terms of the given AP.
{tex}\frac { S _ { m } } { S _ { n } } = \frac { m ^ { 2 } } { n ^ { 2 } } \Rightarrow \frac { \frac { m } { 2 } [ 2 a + ( m - 1 ) d ] } { \frac { n } { 2 } [ 2 a + ( n - 1 ) d ] } = \frac { m ^ { 2 } } { n ^ { 2 } }{/tex}
{tex} \Rightarrow \frac { 2 a + ( m - 1 ) d } { 2 a + ( n - 1 ) d } = \frac { m } { n }{/tex}
{tex}\Rightarrow{/tex} 2an+mnd-nd= 2am+mnd-md
{tex}\Rightarrow{/tex} 2an-2am=nd-md
{tex}\Rightarrow{/tex} 2a(n - m) = d(n - m) {tex}\Rightarrow{/tex}2a=d...(i)
{tex}\therefore \quad \frac { T _ { m } } { T _ { n } } = \frac { a + ( m - 1 ) d } { a + ( n - 1 ) d } = \frac { a + ( m - 1 ) \cdot 2 a } { a + ( n - 1 ) \cdot 2 a }{/tex} [from (i)]
{tex}= \frac { a + 2 a m - 2 a } { a + 2 a n - 2 a } = \frac { 2 a m - a } { 2 a n - a } = \frac { a ( 2 m - 1 ) } { a ( 2 n - 1 ) } = \frac { 2 m - 1 } { 2 n - 1 }{/tex}.

  • 2 answers

Vanshi Indora 6 years, 5 months ago

45

Atharva Jain 6 years, 5 months ago

225=135×1+90 135=90×1+45 90=45×2+0 HCF=45
  • 4 answers

Lavish Kumar 6 years, 5 months ago

(a+b)2-2ab
(A+B)(A-B)

Rohit Guha Roy ? 6 years, 5 months ago

2(a+b)

Rishu Rawat 6 years, 5 months ago

a²+b²+2ab
  • 1 answers

Sia ? 6 years, 5 months ago

Let O be the common centre of the two circles
and AB be the chord of the larger circle which touches the smaller circle at C.
Join OA and OC.
Then, OA = a and OC = b.
Now, {tex} \mathrm { OC } \perp A B{/tex} and OC bisects AB [{tex}\because{/tex} the chord of the larger circle touching the smaller circle, is bisected at the point of contact].
In right {tex}\triangle A C O{/tex}, we have
OA2 = OC2+AC2 [by Pythagoras' theorem]
{tex}\Rightarrow{/tex}AC = {tex}\sqrt { O A ^ { 2 } - O C ^ { 2 } } = \sqrt { a ^ { 2 } - b ^ { 2 } }{/tex}.
{tex}\therefore{/tex} AB = 2AC = {tex}2 \sqrt { a ^ { 2 } - b ^ { 2 } }{/tex} {tex}[ \because \text { C is the midpoint of } A B ]{/tex}
i.e, required length of the chord AB = {tex}2 \sqrt { a ^ { 2 } - b ^ { 2 } }{/tex}

  • 5 answers

Prashasti Prabhakar 6 years, 5 months ago

201 &. 21

Ashish Jirwan 6 years, 5 months ago

21 obviously ?

Rohit Guha Roy ? 6 years, 5 months ago

Get admitted in nursery

Aman Soni 6 years, 5 months ago

21

Atharv Sharma 6 years, 5 months ago

21
1+7
  • 3 answers

Prince Rai 6 years, 5 months ago

8

Ashish Jirwan 6 years, 5 months ago

8

Atharv Sharma 6 years, 5 months ago

7

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App