No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Iron Man 6 years, 5 months ago

yes it is terminating because of its denominater have a factor 5 and 2
  • 1 answers

Sia ? 6 years, 3 months ago

We have, AL = x - 3, AC = 2x, BM = x - 2 and BC = 2x + 3,  and we need to find the value of x.

In {tex}\Delta{/tex}ABC, we have

{tex}L M \| A B{/tex}
{tex}\therefore \quad \frac { A L } { L C } = \frac { B M } { M C }{/tex} [By Thaley's Theorem]
{tex}\Rightarrow \quad \frac { A L } { A C - A L } = \frac { B M } { B C - B M }{/tex}
{tex}\Rightarrow \quad \frac { x - 3 } { 2 x - ( x - 3 ) } = \frac { x - 2 } { ( 2 x + 3 ) - ( x - 2 ) }{/tex}
{tex}\Rightarrow \quad \frac { x - 3 } { x + 3 } = \frac { x - 2 } { x + 5 }{/tex}
{tex} \Rightarrow{/tex} (x - 3) (x + 5) = (x - 2) (x + 3)
{tex} \Rightarrow{/tex} x2 + 2x -15 = x2 + x - 6
{tex} \Rightarrow{/tex} x = 9

  • 1 answers

Sia ? 6 years, 5 months ago

The given equations are:
7(y + 3) - 2(x + 2) = 14
4(y - 2) + 3(x - 3) = 2

So, 7(y + 3) - 2(x + 2) = 14
⇒  7y + 21 - 2x - 4 = 14
⇒ 7y - 2x = 14 + 4 - 21
⇒ - 2x + 7y = -3 ........ (i)

And 4(y - 2) + 3(x - 3) = 2
⇒ 4y - x + 3x - 9 = 2
⇒  4y + 3x = 2 + 8 + 9
⇒ 3x + 4y = 19  .............(ii)

Multiplying (i) by 4 and (ii) by 7, we get
-8x + 28y = -12........(iii)
21x + 28y = 133......(iv)
Subtracting (iii) and (iv),we get
29x = 145
x = 5
Substituting x = 5 in (i),we get
7y = -3 + 10
⇒  7y = 7
⇒  y = 1
{tex}\therefore{/tex} Solution is x = 5, y = 1

  • 1 answers

Abhay Rajput 6 years, 5 months ago

There is a separate formula for this in NCERT
  • 2 answers

Adi Pandey 6 years, 4 months ago

Yes

Iron Man 6 years, 5 months ago

So Mahi is this from Ap?
  • 1 answers

Iron Man 6 years, 5 months ago

Completing square ka matlab hamko us polynomial ko kisi na kisi ke whole square me lana hai jabardasti agar us polynomial me hame kuch add karna pade alaga se to yad rahe ki subtract bhi karna must hai
  • 2 answers

Kavita Raghav 6 years, 5 months ago

In substitution method first of all you have to find the value of first variable for example take a as a first variable and B A second variable let the expression be to A + 5 b is equal to 6 Now possible find the value of a is equal to-5 b so put the value of stay in another equation and their you will find the value of B and then put the value of be in this occasion so you will get the value of a

Iron Man 6 years, 5 months ago

subtitute ka arth hota hai ki us chiz ko hatakar usi ke jaisa kuch rakhna padega same yehi kam polynomial me bhi hoga first eqn se x ka maan nikalo aur usi ko second app me ke x ke jagah par first eqn la x rakho aapka y ka man asani se nikal jayega
  • 1 answers

Arzoo Ansari 6 years, 5 months ago

Solved it by completing the square method
  • 3 answers
x2-x-4=0 x2-(2-2)x-4=0 x2-2x+2x-4=0 x(x-2)+2(x-2)=0 (x+2)(x-2)=0 x-2=0 x=2. ANS x+2=0 x=-2. NEGLECTED VALUE

Akshay Singh 6 years, 5 months ago

x2-2x+2x-4 x(x-2)+2(x-2) (x-2)(x+2)

Dipesh Pandey 6 years, 5 months ago

Madhar chod
  • 2 answers

Yogita Ingle 6 years, 5 months ago

For a pair of given positive integers ‘a’ and ‘b’, there exist unique integers ‘q’ and ‘r’ such that

a=bq+r , where 0≤r<b

Explanation: Thus, for any pair of two positive integers a and b; the relation

a=bq+r , where 0≤r<b

will be true where q is some integer.

Anisha Mishra 6 years, 5 months ago

For any natural a & b there exists whole no q and r in such a way tha a=bq+r where r is greater than or equal to 0
  • 3 answers

Sia ? 6 years, 5 months ago

Let the four parts be (a - 3d), (a - d), (a + d) and (a + 3d). Then,
Sum of the numbers = 32    
{tex}\Rightarrow{/tex}(a - 3d) + (a - d) + (a + d) + (a + 3d) = 32 {tex}\Rightarrow{/tex} 4a = 32 {tex}\Rightarrow{/tex} a = 8
It is given that
{tex}\frac { ( a - 3 d ) ( a + 3 d ) } { ( a - d ) ( a + d ) } = \frac { 7 } { 15 }{/tex}
{tex}\Rightarrow \quad \frac { a ^ { 2 } - 9 d ^ { 2 } } { a ^ { 2 } - d ^ { 2 } } = \frac { 7 } { 15 }{/tex}
{tex}\Rightarrow \quad \frac { 64 - 9 d ^ { 2 } } { 64 - d ^ { 2 } } = \frac { 7 } { 15 } \Rightarrow{/tex}128d2 = 512 {tex}\Rightarrow{/tex} d2 = 4 {tex}\Rightarrow{/tex}d = ± 2
Thus, the four parts are a - 3d, a - d, a + d and a + 3d i.e., 2,6,10,14.

Iron Man 6 years, 5 months ago

25 and 7 its product = 175

Anshul Badgujar 6 years, 5 months ago

But it said to divide it into two parts...
  • 2 answers

Iron Man 6 years, 5 months ago

Yes it is an ap it common difference is √2. its next terms are a+ 4d, a+5d i.e.√2+4*√2=5√2=√50 and √2+5*√2=6√2= √72

Fab 6 years, 5 months ago

No its not in AP as the difference is not same.
  • 2 answers

Sia ? 6 years, 5 months ago

Check syllabus here : https://mycbseguide.com/cbse-syllabus.html

Iron Man 6 years, 5 months ago

you can chek this on icon of my cbse guide
  • 1 answers

Iron Man 6 years, 5 months ago

aparimay means irrational so √2 ,√3
  • 1 answers

Sia ? 6 years, 3 months ago

Let the numerator and the denominator of the fraction be x and y respectively.
Then the fraction is {tex}\frac{x}{y}{/tex}.

Given, The sum of the numerator and the denominator of the fraction is 3 less than the twice of the denominator.
Thus, we have
{tex}x + y = 2y - 3{/tex}
{tex}\Rightarrow{/tex} {tex}x + y - 2y + 3 = 0{/tex}
{tex}\Rightarrow{/tex} {tex}x - y + 3 = 0{/tex}..............(1)
Also given, If the numerator and the denominator both are decreased by 1, the numerator becomes half the denominator. Thus, we have
{tex}x - 1 = \frac{1}{2}(y - 1){/tex}
{tex}{/tex}
{tex}\Rightarrow{/tex} {tex}2(x - 1) = (y - 1){/tex}
{tex}\Rightarrow{/tex} 2x - 2 = (y - 1)
{tex}\Rightarrow{/tex} 2x - y - 1 = 0.......................(2)
So, we have formed  two linear equations in x & y as following:-
x - y + 3 = 0
2x - y - 1 = 0
Here x and y are unknowns.
We have to solve the above equations for x and y.
By using cross-multiplication method , we have
{tex}\frac{x}{{( - 1) \times ( - 1) - ( - 1) \times 3}}{/tex} {tex}= \frac{{ - y}}{{1 \times ( - 1) - 2 \times 3}}{/tex} {tex}= \frac{1}{{1 \times ( - 1) - 2 \times ( - 1)}}{/tex}
{tex}\Rightarrow \frac{x}{{1 + 3}}{/tex} {tex}= \frac{{ - y}}{{ - 1 - 6}} = \frac{1}{{ - 1 + 2}}{/tex}
{tex}\Rightarrow \frac{x}{4} = \frac{{ - y}}{{ - 7}} = \frac{1}{1}{/tex}
{tex}\Rightarrow \frac{x}{4} = \frac{y}{7} = 1{/tex}

Using Part I & III , we get x = 4

& From part II & III, we get y = 7 {tex}{/tex}
{tex}\Rightarrow{/tex} x = 4, y = 7
Hence, The fraction is {tex}\frac{x}{y}{/tex} = {tex}\frac{4}{7}{/tex}

  • 0 answers
  • 1 answers

Sia ? 6 years, 5 months ago

According to the question,the sum of first 10 terms of an AP is -150 and the sum of its next 10 terms is -550
Let a be the first term and d be the common difference of the given AP.
Then, we have
S10=-150
{tex}\Rightarrow \frac { 10 } { 2 } [ 2 a + 9 d ] = - 150{/tex}
{tex}\Rightarrow{/tex}5[2a+9d]=-150
{tex}\Rightarrow{/tex}2a+9d=-30...(i)
Clearly, the sum of first 20 terms =-150+(-550)=-700
{tex}\therefore{/tex}S20=-700
{tex}\Rightarrow \frac { 20 } { 2 } [ 2 a + 19 d ] = - 700{/tex}
{tex}\Rightarrow{/tex}10[2a+19d]=-700
{tex}\Rightarrow{/tex}2a+19d=-70...(iii)
Subtracting (i) from (ii), we get
10d=-40
{tex}\Rightarrow{/tex}d=-4
{tex}\Rightarrow{/tex}2a=-30-9(-4)=-30+36=6
{tex}\Rightarrow{/tex}a=3
Thus, we have 
First term=a=3
Second term= a+d=3+2(-4)=-1
Third term=a+2d=3+2(-4)=3-8=-5
Fourth term=a+3d=3+3(-4)=3-12=-9
Thus, the given AP is 3,-1,-5,-9,....

  • 1 answers

Sia ? 6 years, 5 months ago

Given: The diagonals of a quadrilateral ABCD intersect each other at the point O such that {tex}\frac{{AO}}{{BO}} = \frac{{CO}}{{DO}}{/tex}
To prove: ABCD is trapezium.
Construction: Through O draw a line OE||BA intersecting AD at E.
Proof: In {tex}\triangle DBA{/tex}{tex}\because OE||BA{/tex}
 
{tex}\therefore \frac{{DO}}{{BO}} = \frac{{DE}}{{AE}} \Rightarrow \frac{{CO}}{{AO}} = \frac{{DE}}{{AE}}{/tex}
{tex}\because \frac{{AO}}{{BO}} = \frac{{CO}}{{DO}}\,[Given]{/tex}
{tex}\Rightarrow \frac{{DO}}{{BO}} = \frac{{CO}}{{AO}} \Rightarrow \frac{{AO}}{{CO}} = \frac{{AE}}{{DE}}{/tex}.........[Taking reciprocals]
{tex}\therefore {/tex}In {tex}\triangle ADC{/tex}
OE {tex}\parallel{/tex} CD ...........[By converse basic proportionality theorem]
But OE {tex}\parallel{/tex} BA
BA {tex}\parallel{/tex} CD........[By construction]
The quadrilateral ABCD is a Trapezium.

  • 3 answers

Bhajan Tv 6 years, 5 months ago

??????

Neha Rani 6 years, 5 months ago

England

Rohit Guha Roy ? 6 years, 5 months ago

NewZealand
  • 1 answers

Sia ? 6 years, 5 months ago

Statics is the branch of mechanics concerned with bodies at rest and forces in equilibrium.

  • 3 answers

Iron Man 6 years, 5 months ago

then -√5 is irrational no. and you have to rise contradiction.

Iron Man 6 years, 5 months ago

then you take another rational 7 and substract by 7-√5 then√5 will remain .

Iron Man 6 years, 5 months ago

You have to let rational firstly
  • 3 answers

Lavish Kumar 6 years, 5 months ago

So, 24x2-56x-9+21

Lavish Kumar 6 years, 5 months ago

Then we split 504 into 56 and 9

Lavish Kumar 6 years, 5 months ago

First of all we will multiply 21 and 24x2
  • 1 answers

Iron Man 6 years, 5 months ago

tan7*tan83*tan67*tan23* tan60 now,tan7 °= cot 83° ,tan67= cot 23 therfore 1*1tan60°= √3
  • 1 answers

Altaf Raza 6 years, 5 months ago

2√2+5√5+2√10
  • 0 answers
  • 1 answers

Tec Om 6 years, 5 months ago

write the equation in order ,eleminate a variable by change its sign(substraction)and adding
e.g -- 2x+3y -- 1
..... eq 1st 2x+2y -- 0
..... eq 2nd (-) (-) -- (-)
y -- 1 then put the value of yin eq 1nd /2nd 2x+3y -- 1
2x+3 -- 1
2x -- 1-3
x-- -1
  • 2 answers

Prachi Janwani 6 years, 5 months ago

y square= 81-(18×4)=9

Prachi Janwani 6 years, 5 months ago

Le the speed of boat in still water be x km/h.x=9 km/h (given) And speed of boat in current be y km/h. Distance= 15 km. T= time for traveling downstream t= time for traveling upstream Total time = T+t= 3 hours 45 minutes= 15/4 hours. For downstream Time = distance/speed T= 15/(x+y) T= 15/9+y _____ equation 1 For upstream t= 15/(x-y) t=15/9-y _______ equation 2 Adding equation 1 and equation 2 T+t= 15/(9+y)+15/(9-y) 15/4=15(18)/(81-y square) y square= 81-(18×4) y square= 8 y=√9 y=3 Answer= speed of motorboat in stream is 3km/h.

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App