No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Yog Zolage 6 years, 5 months ago

Geometre need which work
  • 2 answers

Sia ? 6 years, 5 months ago

A chemical process in which a substance reacts with oxygen to give off heat and light is called combustion.

Ys
  • 2 answers

Sia ? 6 years, 5 months ago

  • A parallelogram is a quadrilateral with 2 pairs of opposite, equal and parallel sides.
  • A rectangle is a quadrilateral with 2 pairs of opposite, equal and parallel sides but also forms right angles between adjacent sides.

Iron Man 6 years, 5 months ago

Rectangle is also also a parallelogram whose all angles are 90°. But generally paralleogram is a quadrilateral whose opposite sides are parallel.
  • 1 answers

Sia ? 6 years, 5 months ago

You can check solutions here : https://mycbseguide.com/ncert-solutions.html

  • 1 answers
Because of the days in a year is 365 and a 1/4 days. This 1/4 day was consider at the every 4th year that we call as a leap year.
  • 2 answers

Rahul Ranjan Singh 6 years, 5 months ago

Let the breadth of the garden be y metre So,length becomes( y+4) We know that 2(length +breadth)=perimeter of rectangle. A\c 1/2*2(y+4+y) = 36 2y+4 =36 2y=36-4 y=32/2 y=16 Therefore,we get breadth=y=16m and length=y+4=16+4=20m

Arsh Tutorials 6 years, 5 months ago

Let x be the length and y be the breadth.

{tex}\therefore{/tex} x = y + 4 {tex}\implies{/tex}x - y = 4 --- (1)

P = 2 (x + y)  {tex}\implies{/tex}x + y = 36 --- (2)

(1) + (2) {tex}\implies{/tex}2x = 40 {tex}\implies{/tex}x = 20 m {tex}\implies{/tex} y = 16 m

  • 0 answers
  • 2 answers

?Niharika Sharma ? 6 years, 5 months ago

If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio. This is called Thales Theorem or BPT.

?Niharika Sharma ? 6 years, 5 months ago

Basic Proportionality Theorem
  • 1 answers

Neha Panchal 6 years, 5 months ago

First take out the sum of the quadratic equation is alpha + beta is equals to minus 7 upon 6 then taken out the product of the quadratic equation which is 3 upon 6 is equals to 1 by 2 now the sum of zeros for the required polynomial to 2alpha + 2 Beta is equals to 2( alpha + beta) which is 2 into minus 7 by 6 minus = 7 by 3 Now product of zeros for the required polynomial Two Alpha into two beta where we take to as common 2 into 1 by 2 is equals to 1 so show for the making of the quadratic polynomial we have f of X is equals to K whole bracket x square+ 7 by 3 x plus one
  • 3 answers

Rahul Ranjan Singh 6 years, 5 months ago

Then I can solve

Rahul Ranjan Singh 6 years, 5 months ago

Type question and send

?Niharika Sharma ? 6 years, 5 months ago

You can see all the NCERT solutions that u want in this app( My cbseguide) okk??
  • 1 answers

Akshay Thorat 6 years, 5 months ago

HCF of 240 and 228 is 12
  • 1 answers

Sia ? 6 years, 5 months ago

Let (-1, 6) divides line segment joining the points (-3, 10) and(6, -8) in k:1.
Using Section formula, we get
{tex} - 1 = \frac{{( - 3) \times 1 + 6 \times k}}{{k + 1}}{/tex} {tex}4 \Rightarrow - k - 1 = ( - 3 + 6k){/tex}
⇒ −7k = −2 ⇒ k= {tex}\frac{2}{7}{/tex}
Therefore, the ratio is {tex}\frac{2}{7}:1{/tex} which is equivalent to 2:7.
Therefore, (-1, 6) divides line segment joining the points (-3, 10) and (6, -8) in 2:7.

  • 0 answers
  • 1 answers

Sia ? 6 years, 3 months ago

We have 2x2 - 7x + 3 = 0

{tex}\implies2( x^2 - {7 \over 2}x + {3\over 2}) = 0{/tex}

{tex}\implies​​ x^2 - {7 \over 2}x + {49 \over 16} = {-3 \over 2} +{ 49 \over 16}{/tex} (Adding 49/16 to both sides)

{tex}\implies x^2 -2 \times x \times {7 \over 4} + ({7 \over 4})^2 = {-24 +49 \over 16}{/tex}

{tex}\implies (x-{7\over4})^2 = {25 \over 16}{/tex}

{tex}\implies x-{7\over 4}= \pm \sqrt({25 \over 16}){/tex}

{tex}\implies x={7\over 4} \pm {5 \over 4}{/tex}

{tex}\implies x={7\over 4} + {5 \over 4}\, and \,x={7\over 4} - {5 \over 4}{/tex}

{tex}\implies x=3\, and \,{1\over 2}{/tex}

{tex}\therefore{/tex}the roots of the given equation are {tex}3{/tex} and {tex}1\over 2{/tex}.

  • 0 answers
  • 1 answers

Ayush Gaur 6 years, 4 months ago

676806467649464383455857668523424386876867822734556438349
  • 1 answers

Sia ? 6 years, 3 months ago

Let the total number of students be x.
Cost of food for each member Rs. {tex}\frac{500}{x}{/tex}
If the number of students decreased by 5. Then,
New cost of food for each member Rs. {tex}\frac{500}{x - 5}{/tex}
According to question,
{tex}\frac{500}{x- 5} - \frac{500}{x} = 5{/tex}
{tex}\Rightarrow \frac{ 500x - 500(x - 5)}{x(x-5)} = 5{/tex}
{tex}\Rightarrow \frac{500x - 500x + 2500}{x^2 - 5x } = 5{/tex}
{tex}\Rightarrow \frac{2500}{ x^2 - 5x } = 5{/tex}
{tex}\Rightarrow \frac{ 2500}{ 5} = x^2 - 5x{/tex}
{tex}\Rightarrow{/tex} {tex}500=x^2-5x{/tex}
{tex}\Rightarrow{/tex} {tex}x^2-5x-500=0{/tex}
{tex}\Rightarrow{/tex}{tex}x^2-25x+20x-500=0{/tex}
{tex}\Rightarrow{/tex} x(x - 25) + 20(x - 25) = 0
{tex}\Rightarrow{/tex} (x + 20)(x - 25) = 0

{tex}\Rightarrow{/tex} x=-20,25
{tex}\Rightarrow{/tex} As number of students can't be negative. {tex}\Rightarrow{/tex} x = 25
Hence, the number of students attended the picnic = x - 5
= 25 - 5 = 20.

  • 0 answers
  • 3 answers

Iron Man 6 years, 5 months ago

By similarity of triangle

Mansi Mandotiya 6 years, 5 months ago

The formula of pythagoras theorem is : H²=P²+B²

Ayush Gaur 6 years, 5 months ago

By practicing
  • 2 answers

Naresh Lad 6 years, 5 months ago

Trignometry

Naresh Lad 6 years, 5 months ago

GoPCat gigDJ dokgx
  • 1 answers

Sia ? 6 years, 5 months ago

The given equations are
{tex}2x - 3y - 7 = 0,{/tex}
{tex}(k +1) x + (1 - 2k) y + (4 - 5k) = 0.{/tex}
These equations are of the form
{tex}a_1x + b_1y+ c_1 = 0,\ a_2x + b_2y +c_2= 0,{/tex}
where {tex}a_1 = 2,\ b_1= -3,\ c_1= -7\ and\ a_2 =(k + 1),\ b_2= (1 - 2k),\ c_2= (4 - 5k){/tex}
Let the given system of equations have infinitely many solutions.
Then, {tex}\frac { a _ { 1 } } { a _ { 2 } } = \frac { b _ { 1 } } { b _ { 2 } } = \frac { c _ { 1 } } { c _ { 2 } }{/tex}
{tex}\Rightarrow \quad \frac { 2 } { ( k + 1 ) } = \frac { - 3 } { ( 1 - 2 k ) } = \frac { - 7 } { ( 4 - 5 k ) }{/tex}
{tex}\Rightarrow \frac { 2 } { ( k + 1 ) } = \frac { 3 } { ( 2 k - 1 ) } = \frac { 7 } { ( 5 k - 4 ) }{/tex}
{tex}\Rightarrow \quad \frac { 2 } { ( k + 1 ) } = \frac { 3 } { ( 2 k - 1 ) }{/tex} and {tex}\frac { 3 } { ( 2 k - 1 ) } = \frac { 7 } { ( 5 k - 4 ) }{/tex}
{tex}\Rightarrow{/tex} 4k - 2 = 3k + 3 and 15k -12 = 14k - 7
{tex}\Rightarrow{/tex} k = 5 and k = 5.
Hence, k = 5.

  • 1 answers

Sirsti Sngm 6 years, 5 months ago

Let the tens digit be x and ones digit be y ,then the number will (10x+y) Then A/q, = (10x+y )=4(x+y) = 10x+y=4x+4y =6x-3y =0 = 2x -y =0..............(1) Again A/q, (10x+y) +18 = (10y+x) = 10x+y+18=10y+x =9x -9y =-18 = x-y=-2.............(2) Substracting 2 from 1 we get, x=0-(-2) {x=2} Substituting value of x in 1 we get, 4-y=0 -y=-4 {y=4} Therefore the digit will be 24.
  • 2 answers

Sia ? 6 years, 5 months ago

Let the consecutive multiples of 3 be 3x and 3(x + 1).
Then, we have
 {tex}3x\times3(x + 1) = 648{/tex}
{tex}\Rightarrow{/tex} {tex}9x^2 + 9x - 648 = 0{/tex}
{tex}\Rightarrow{/tex} {tex}x^2 + x - 72 = 0{/tex}
{tex}\Rightarrow{/tex} {tex}x^2 + 9x - 8x - 72 = 0{/tex}
{tex}\Rightarrow{/tex} {tex}x(x + 9) - 8(x + 9) = 0{/tex}
{tex}\Rightarrow{/tex} x + 9 = 0 or x - 8 = o
{tex}\Rightarrow{/tex} x = -9 or x = 8
Since x is a positive number, x {tex}\neq{/tex} -9
{tex}\Rightarrow{/tex} x = 8
{tex}\Rightarrow{/tex} 3x = 3(8) = 24 and 3(x + 1) = 3(9) = 27
Hence, the required consecutive multiples of 3 are 24 and 27.

Iron Man 6 years, 5 months ago

Language is strange of Sia so I am not understanding please use simple language
  • 1 answers

Yogita Ingle 6 years, 5 months ago

Let two consecutive multiples of 3 be x and (x+3)

As per given condition

x   (x+3) = 648

⇒ x² + 3x = 648

⇒ x² + 3x -648 = 0

⇒ x² + 27x - 24x -648 = 0

⇒ x ( x + 27 ) -24 ( x +27)

⇒ ( x - 24) ( x + 27)

⇒ x = 24 and x = -27

so, we take x = 24.

Required multiples of 3

⇒ x = 24

⇒ x +3 = 24+3 = 27.

 

  • 1 answers

Sia ? 6 years, 5 months ago

Let the point of x-axis be P(x, 0)
Given A(2, -5) and B(-2, 9) are equidistant from P
That is PA = PB
Hence PA2 = PB2  → (1)
Distance between two points is {tex}\sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2]}{/tex}
PA = {tex}\sqrt{[(2 - x)^2 + (-5 - 0)^2]}{/tex}
PA2 = 4 - 4x +x2 + 25
= x- 4x + 29
Similarly, PB2 = x+ 4x + 85
Equation (1) becomes
x- 4x + 29 = x+ 4x + 85
- 8x = 56
x = -7
Hence the point on x-axis is (-7, 0)

  • 2 answers

Kavita Raghav 6 years, 5 months ago

Question incomplete

Ram Kumar 6 years, 5 months ago

Your questions is incomplete

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App