No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 0 answers
  • 1 answers

Sia ? 6 years, 3 months ago

Let the first term of the A.P. be 'a'.
and the common difference be 'd'.
19th term of the A.P., t19 = a + (19 - 1)d = a + 18d
6th term of the A.P., t6 = a + (6 - 1)d = a + 5d
9th term of the A.P., t9 = a + (9 - 1)d = a + 8d
t19 = 3t6
{tex}\Rightarrow{/tex}a + 18d = 3(a + 5d)
{tex}\Rightarrow{/tex}a + 18d = 3a + 15d
{tex}\Rightarrow{/tex}18d - 15d = 3a - a
{tex}\Rightarrow{/tex}3d = 2a
{tex}\therefore \mathrm { a } = \frac { 3 \mathrm { d } } { 2 }{/tex}
t9 = 19
{tex}\Rightarrow \frac { 3 \mathrm { d } } { 2 } + 8 \mathrm { d } = 19{/tex}
{tex}\Rightarrow \frac { 3 d + 16 d } { 2 } = 19{/tex}
{tex}\Rightarrow \frac { 19 \mathrm { d } } { 2 } = 19{/tex}
{tex}\Rightarrow{/tex} d = 2
{tex}\Rightarrow{/tex}a = 3
t2 = 3 + (2 - 1)2 = 5
t3 = 3 + (3 - 1)2 = 7
The series will be 3, 5, 7......

  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago

{tex}\frac{1}{7x}{/tex} + {tex}\frac{1}{6y}{/tex} = 3 .......(i)
and {tex}\frac{1}{2x}{/tex} - {tex}\frac{1}{3y}{/tex} = 5 ...........(ii)
Multiplying equation (ii) by {tex}\frac{1}{2}{/tex}, we get
 {tex}\frac{1}{4x}{/tex} - {tex}\frac{1}{6y}{/tex} = {tex}\frac{5}{2}{/tex} ..........(iii)
Adding eq. (i) and (iii), we get
{tex}\frac{1}{4x}{/tex} + {tex}\frac{1}{7x}{/tex} = {tex}\frac{5}{2}{/tex} + 3
{tex}\Rightarrow{/tex} {tex}\frac{7 + 4}{28x}{/tex} = {tex}\frac{11}{2}{/tex}
{tex}\Rightarrow{/tex}{tex}\frac{11}{28x}{/tex} = {tex}\frac{11}{2}{/tex}
{tex}\Rightarrow{/tex} 28x = 2 
{tex}\Rightarrow{/tex} x = {tex}\frac{1}{14}{/tex}
Putting the value of x in eq.(i), we get
{tex}\frac{1}{7(\frac1{14})}{/tex} + {tex}\frac{1}{6y}{/tex} = 3
y = {tex}\frac{1}{6}{/tex}
Hence x = {tex}\frac{1}{14}{/tex} and y = {tex}\frac{1}{6}{/tex} is the solution of given system of equations.

  • 0 answers
  • 0 answers
  • 1 answers

Yogita Ingle 6 years, 4 months ago

No number of the form 4q + 2 is a perfect square because,
If q is a prime factor of a
perfect square, then q^2 must also be the factor of a perfect square.
4q + 2 = 2 (2q + 2), here 2 is a factor of (2q + 2), but 2^2 = 4 is not the factor of (4q + 2) as (4q + 2) = 2(2q + 1), which is odd and we know that all the odd numbers are not divisible by 2.

So, we can say that 4q + 2 is not divisible by 4
Hence, 4q + 2 is not a perfect

 

  • 1 answers

Kajal Shukla 6 years, 4 months ago

Yes
  • 2 answers

Aryan Singh 6 years, 4 months ago

Whats your insta
It may be difficult because 2019 board exam finished before the given date and 2020 board classes has more time to cover there syllabus and revise it. But there is one more rule of giving 2 category of paper one is simple and 2nd one is difrficult.
  • 0 answers
  • 1 answers

Rachit Agarwal 6 years, 5 months ago

(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
  • 1 answers

Sia ? 6 years, 4 months ago

Let the width of the path be x meters,
We know that, if length of rectangle = l, width of rectangle =b & width of path around it x then,
Area of path = {tex}lb\;-(l-2x)(b-2x){/tex}
{tex}\Rightarrow{/tex}16 {tex}\times{/tex} 10 - (16 - 2x)(10 - 2x) = 120
{tex}\Rightarrow{/tex} 16 {tex}\times{/tex} 10 - {160 - 32x - 20x + 4x2} = 120
{tex}\Rightarrow{/tex} 160 - 160 + 32x + 20x - 4x2 = 120
{tex}\Rightarrow{/tex} -4x2 + 52x - 120 = 0
{tex}\Rightarrow{/tex} 2x2 - 26x + 60 = 0 
{tex}\Rightarrow{/tex} x2 - 13x + 30 = 0
{tex}\Rightarrow{/tex} x2 - 10x - 3x + 30 = 0 {tex}\Rightarrow{/tex} x(x - 10) - 3(x - 10) = 0
{tex}\Rightarrow{/tex} (x - 10) (x - 3) = 0
{tex}\Rightarrow{/tex} x - 10 = 0 or x - 3 = 0
But x ≠10 ,as width of path can't be greater than width of rectangle. So, x = 3m
Hence, the width of the path = 3 m

  • 1 answers

Sia ? 6 years, 4 months ago

Let the polynomial be ax2 + bx + c,
and its zeroes be {tex}\alpha {/tex} and {tex}\beta {/tex}.
Then, {tex}\alpha + \beta = 0 = - \frac { b } { a } \text { and } Q \beta = \sqrt { 5 } = \frac { c } { a }{/tex}
If a = 1, then b = 0 and {tex}c = \sqrt { 5 }{/tex}.
So, one quadratic polynomial which fits the given conditions is {tex}x ^ { 2 } + \sqrt { 5 }{/tex} .

  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago

Factors of x2 + 7x + 12 :
x2 + 7x + 12 = 0
{tex}\Rightarrow{/tex} x2 + 4x + 3x + 12 = 0
{tex}​​\Rightarrow{/tex} x(x + 4) + 3(x + 4) = 0
{tex}​​\Rightarrow{/tex}(x + 4) (x + 3) = 0
{tex}​​\Rightarrow{/tex} x = - 4, -3 ...(i)
Since p(x) = x4 + 7x3 + 7x2 + px + q
If p(x) is exactly divisible by x2+ 7x + 12, then x = - 4 and x = - 3 are its zeroes. So putting x = - 4 and x = - 3.
p(- 4) = (- 4)4 + 7(- 4)3 + 7(- 4)2 + p(- 4) + q
but p(- 4) = 0
{tex}\therefore{/tex} 0 = 256 - 448 + 112 - 4p + q
0 = - 4p + q - 80
{tex}\Rightarrow{/tex}4p - q = - 80 ...(i)
and p(-3) = (-3)4 + 7(-3)3 + 7(-3)2 + p(-3) + q
but p(-3) = 0
{tex}\Rightarrow{/tex}0 = 81-189 + 63 - 3p + q
{tex}\Rightarrow{/tex}0 = -3p + q -45
{tex}\Rightarrow{/tex}3p -q = -45 ..........(ii)

On putting the value of p in eq. (i),we get,
{tex}4(-35) - q = - 80{/tex}
{tex}\Rightarrow{/tex}{tex}-140 - q = - 80{/tex}
{tex}\Rightarrow\ {/tex}{tex}-q = 140 - 80{/tex}
{tex}\Rightarrow\ {/tex} {tex}-q = 60{/tex}
{tex}\therefore{/tex} {tex}q = -60{/tex}
Hence, p = -35, q = -60

  • 1 answers

Sia ? 6 years, 4 months ago

Let take √5 as a rational number
If a and b are two co-prime number and b is not equal to 0.
We can write √5 = a/b
Multiply by b both side we get
b√5 = a
To remove root, Squaring on both sides, we get
5b2 = a2 ……………(1)
Therefore, 5 divides a2 and according to a theorem of rational number, for any prime number p which is divided 'a2' then it will divide 'a' also.
That means 5 will divide 'a'. So we can write
a = 5c
and putting the value of a in equation (1) we get
5b2 = (5c)2
5b2 = 25c2
Divide by 25 we get
b2/5 = c2
again using the same theorem we get that b will divide by 5
and we have already get that a is divided by 5
but a and b are co-prime number. so it is contradicting.
Hence √5 is an irrational number

  • 3 answers

Piyush Raj 6 years, 5 months ago

A+B+C/2=180/2 B+C/2=90=-A/2 B+C/2=90-A/2 multiplying both sides by sinA we get sin(B+C/2)=sin(90-A/2) sin(B+C/2)=cos(A/2) hence it is proved

Piyush Raj 6 years, 5 months ago

A+B+C/2=180/2

Priyanjali Singh 6 years, 5 months ago

In triangle abc A+B+C=180 dividing both side by 2 A/2 +B/2+c/2=90 b/2+c/2=90-a/2 sin(b+c/2)=sin(90-a/2) sin(b+c/2)=cot(a/2)
  • 1 answers

Priyanjali Singh 6 years, 5 months ago

what is ''®'' here then i can answer
  • 1 answers

Priyanjali Singh 6 years, 5 months ago

This question is from which chapter and which exercise of which book
  • 1 answers

Ajaykarthi Keyan 6 years, 5 months ago

Yes ,in this year there are 20mcq questions
  • 1 answers

Piyush Raj 6 years, 5 months ago

cosec^2theta-cot^2theta =1 lhs 1/sin^2theta=cos^2/sin^2theta by taking lcm we get 1-cos^2theta /sin^2theta {1-cos^2theta =sin^2theta} so ' sin^2theta/sin^2theta cancelout u got the answer 1 1 proved
  • 1 answers

Nm ???? 6 years, 5 months ago

See on this aap in maths
  • 1 answers
May be related to speed of anything from ch. 3or4 From ch. 2 alpha and bita. From ch. 1 related to vriables power
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App