No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Aadya Singh 6 years, 4 months ago

a = 6 , d = 13-6=7, a^n= 216 , n= ? As we know that, a^ n= a+ (n-1)×d 216= 6+(n-1)×7 216-6= 7n-7 210+7 = 7n 217/7=n n=31 Thus,the AP contains 31 terms. Therefore,its middle term = 31+1/2= 32/2 =16th term. So, middle term of AP = a + 15 d = 6+15 ×7= 111.
  • 1 answers

Muhammad Haaris 4 years, 5 months ago

where is the answer
  • 1 answers

Sia ? 6 years, 3 months ago

Taking {tex}\frac { 1 } { x } = u{/tex} and  {tex}\frac { 1 } { y } = v{/tex}, the above system of equation becomes
{tex}{/tex}au - vb = 0............ (i)
{tex}{/tex} {tex}{/tex}ab2u + a2bv = a2 + b2.......... (ii)
By cross-multiplication, using (i) and (ii) we have
{tex}\frac { u } { - b \times - \left( a ^ { 2 } + b ^ { 2 } \right) - a ^ { 2 } b \times 0 } = \frac { - v } { a \times - \left( a ^ { 2 } + b ^ { 2 } \right) - a b ^ { 2 } \times 0 } = \frac { 1 } { a \times a ^ { 2 } b - a b ^ { 2 }( - b) }{/tex}
{tex}\Rightarrow \quad \frac { u } { b \left( a ^ { 2 } + b ^ { 2 } \right) } = \frac { - v } { - a \left( a ^ { 2 } + b ^ { 2 } \right) } = \frac { 1 } { a ^ { 3 } b + a b ^ { 3 } }{/tex}
{tex}\Rightarrow \quad \frac { u } { b \left( a ^ { 2 } + b ^ { 2 } \right) } = \frac { v } { a \left( a ^ { 2 } + b ^ { 2 } \right) } = \frac { 1 } { a b \left( a ^ { 2 } + b ^ { 2 } \right) }{/tex}
{tex}\Rightarrow \quad u = \frac { b \left( a ^ { 2 } + b ^ { 2 } \right) } { a b \left( a ^ { 2 } + b ^ { 2 } \right) } = \frac { 1 } { a } \text { and } v = \frac { a \left( a ^ { 2 } + b ^ { 2 } \right) } { a b \left( a ^ { 2 } + b ^ { 2 } \right) } = \frac { 1 } { b }{/tex}
Now, {tex}u = \frac { 1 } { a } {/tex}
{tex}\Rightarrow \frac { 1 } { x } = \frac { 1 } { a } {/tex}
{tex}\Rightarrow {/tex} x = a
and {tex}v = \frac { 1 } { b } {/tex}
{tex}\Rightarrow \frac { 1 } { y } = \frac { 1 } { b }{/tex}
{tex} \Rightarrow{/tex}  y = b
Hence, the solution of the given system of equation is x = a, y = b.

  • 2 answers

??? ??✌ 6 years, 4 months ago

no

??Rohit Guha Roy?? 6 years, 4 months ago

Me
  • 0 answers
  • 5 answers

Anamika Gangwar 6 years, 4 months ago

Evergreen

Nm ???? 6 years, 4 months ago

U solve the book ncert and ncert exampler both r best for exam the paper always come from ncert so u can solve ncert

Aditi Jain 6 years, 4 months ago

Oswal

Priyanshu Rikhari 6 years, 4 months ago

Arihant sample copy le lo market me easily mil zaygi

❤ 753 6 years, 4 months ago

Oswall
  • 2 answers

Sia ? 6 years, 3 months ago

We have, abx2 + (b2 -ac) x-bc = 0

{tex}\implies{/tex}abx2 + b2 x - acx - bc = 0

{tex}\implies{/tex}bx ( ax+b) - c (ax + b) = 0

{tex}\implies{/tex}(ax + b) (bx - c) = 0

Either ax+b = 0 or bx - c = 0

{tex}\implies x = -{b \over a},\, {c \over b}{/tex}

Hence, {tex}x = -{b \over a},\, {c \over b}{/tex} are the required solutions.

Nee Ti 6 years, 3 months ago

Okk
  • 2 answers

Aadya Singh 6 years, 4 months ago

a^n = a + ( n- 1 ) d

Rudra Rawat 6 years, 4 months ago

a,a+2d,a+3d.......a+(n-1)d
  • 0 answers
  • 3 answers

Sia ? 6 years, 4 months ago

Zero of a polynomial is a solution to the polynomial equation, P(x) = 0 but Root of a polynomial is that value of x that makes the polynomial equal to 0.

Mahi Garg 6 years, 4 months ago

Thanks sia and Raj kumar Mahato..

Iron Man 6 years, 4 months ago

zeroes are the solution only for polynomial. But solutions are said to be roots if LHS=RHS means eqation. It is seen inQuadratic eqn.Thanks Mahi
  • 1 answers

Sia ? 6 years, 4 months ago

We will solve this by contradiction method i.e., 

Assume {tex}5 - \sqrt { 3 } = \frac { p } { q }{/tex} be a rational number.
{tex}\therefore 5 - \frac { p } { q } = \sqrt { 3 }{/tex} or {tex}\frac { 5 q - p } { q } = \sqrt { 3 }{/tex},
Since p,q are integers, therefore {tex}\frac { 5 q - p } { q }{/tex} is a rational number, which is a contradiction,since {tex}\sqrt 3{/tex} is an irrational number.
Therefore, our supposition is wrong and hence, 5 - {tex}\sqrt 3{/tex} is irrational.

  • 1 answers

Pk . 6 years, 4 months ago

(2+3)/2 i.e 5/2
  • 0 answers
  • 6 answers

Divyansh Chauhan 6 years, 4 months ago

1

Anubhav Yadav 6 years, 4 months ago

1 ans

Nishant Sharma 6 years, 4 months ago

=2x×5x=10 =10x=10 x=10/10= 10

Dhruv Chourasiya 6 years, 4 months ago

1is the answer

Rachna Agarwal 6 years, 4 months ago

Meanns the answer is 1

Rachna Agarwal 6 years, 4 months ago

1
  • 4 answers

Nikhil Jain 6 years, 4 months ago

Goo

Sandeep Yadav 6 years, 4 months ago

Those reactions in which new substance with new properties are formed.

Student Lyf ? 6 years, 4 months ago

Chemical reaction, a process in which kne or more substances, the reactants are converted to one or more different substances, the products. Substances are either chemical elements are compounds. A chemical reactions rearranges the constituents atoms of the reactants to create different Substances as products.

Mohd Ayan 6 years, 4 months ago

Type of chamical reaction
  • 2 answers

Arnav Waghmare 6 years, 4 months ago

45

Surya Narayan Swain 6 years, 4 months ago

It cant be done because in this case always the smaller one will be devided by the greater ones
  • 2 answers

Mohd Ayan 6 years, 4 months ago

Sir

Karpagam Selvakumar 6 years, 4 months ago

0
  • 1 answers

Karpagam Selvakumar 6 years, 4 months ago

2 (2)+7 (1)=11 4+7=11 11=11 LHS=RHS 2-3 (1)=5 2-3=5 -1#5 LHS#RHS
  • 2 answers

Naruto Uzumaki??? 5 years, 10 months ago

Thx yogita again

Yogita Ingle 6 years, 4 months ago

38220>196 we always divide greater number with smaller one.
Divide 38220 by 196 then we get quotient 195 and no remainder so we can write it as
38220 = 196 * 195 + 0
As there is no remainder so deviser 196 is our HCF

 

  • 2 answers

Arnav . 6 years, 4 months ago

Quadritic formula is -b+√d/2 or

Mohd Ayan 6 years, 4 months ago

What do you mean by quadratic formula
  • 0 answers
  • 1 answers

Yogita Ingle 6 years, 4 months ago

A polynomial equation whose degree is 2, is known as quadratic equation. A quadratic equation in its standard form is represented as: ax2 + bx + c = 0 , where a, b and c are real numbers such that a ≠ 0 is a variable.

The number of roots of a polynomial equation is equal to its degree. So, a quadratic equation has two roots.

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App