No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 6 years, 3 months ago

Let the cost of 1 book be Rs.x and that of 1 pen be Rs.y.
Then, according to the question,
5x + 7y = 79 ...(1)
and 7x + 5y = 77 ...(2)
Let us draw the graphs of the equation (1) and (2) be finding two solutions.
These two solutions of the equations (1) and (2) are given below in table 1 and table 2 respectively.
For equation (1) 5x + 7y = 79
{tex}\Rightarrow{/tex} 7y = 79 - 5x {tex}\Rightarrow y = \frac{{79 - 5x}}{7}{/tex}
Table 1 of solutions

X 6 -8
Y 7 17

For equation (2) 7x + 5y = 77
{tex}\Rightarrow{/tex} 5y = 77 - 7x
{tex}\Rightarrow y = \frac{{77 - 7x}}{5}{/tex}
Table 2 of solutions

x 1 -4
y 14 21

We plot the points A(6, 7) and B(-8, 13) on a graph paper and join these points to form the line AB representing the equation (1) as shown in the figure. Also, we plot the points C(1, 14) and D(-4, 21) on the same graph paper and join these points to form the line CD representing the equation (2) as shown in the same figure.
 
In the figure, we observe that the two lines intersect at the points A(6, 7). So, x = 6 and y = 7 is the required solution of the pair of linear equation formed, i.e., the cost of 1 book is Rs.6 and of 1 pen is Rs.7.
Therefore the cost of 1 book and 2 pens = 6 + 2 {tex}\times{/tex} 7 = Rs.20.

  • 1 answers

Sia ? 6 years, 3 months ago

We have, α and β are the roots of the quadratic polynomial. f(x) =x2 - 5x + 4
Sum of zeros: {tex}\alpha+\beta=-\frac{b}{a}=-\frac{\text { coefficient of } x}{\text { coefficient of } x^{2}}{/tex}
product of zeros: {tex}\alpha \beta=\frac{c}{a}=\frac{\text { constant term }}{\text { coefficient of } x^{2}}{/tex}
We have a=1,b=-5 and c= 4.
Sum of the roots = α + β = 5
Product of the roots = αβ = 4
So,
{tex}\frac{1}{\alpha } + \frac{1}{\beta } - 2\alpha \beta = \frac{{\beta + \alpha }}{{\alpha \beta }} - 2\alpha \beta{/tex}
{tex}5/4-2\times4=5/4-8{/tex} ={tex}\left(5-32\right)/4{/tex}={tex}-27/4{/tex}
Hence,we get the result of  {tex}\frac{{ 1 }}{\alpha} + \frac{{ 1 }}{\beta} - 2\alpha\beta{/tex} = {tex}-\frac{{ 27 }}{ 4}{/tex}

  • 2 answers

Sia ? 6 years, 4 months ago

You can get question papers here : https://mycbseguide.com/cbse-question-papers.html

Harshit Tiwari 6 years, 4 months ago

But link was not open
  • 1 answers

Sia ? 6 years, 4 months ago

The given equations may be written as
{tex}a^2x - b^2y = a^2b + ab^2{/tex} ....... (i)
{tex}ax - by = 2ab{/tex} ......... (ii)
Multiplying (ii) by b and subtracting the result from (i), 
{tex}(a^2 - ab)x = a^2b - ab^2{/tex}
{tex}\Rightarrow{/tex} {tex}(a^2 - ab)x = b(a^2 - ab){/tex}
{tex}\Rightarrow{/tex} {tex}x = b.{/tex}
Putting {tex}x = b{/tex} in (ii), we get
{tex}a b - b y = 2 a b {/tex}

{tex}\Rightarrow b y = - a b{/tex}

{tex} \Rightarrow y = \frac { - a b } { b } = - a{/tex}
Hence, x = b and y = -a.

  • 1 answers

Sia ? 6 years, 4 months ago

On dividing n by 3, let q be the quotient and r be the remainder.
Then, {tex}n = 3q + r{/tex}, where {tex}0 \leq r < 3{/tex}
{tex}\Rightarrow\;n = 3q + r{/tex} , where r = 0,1 or 2
{tex}\Rightarrow{/tex} {tex}n = 3q \;or \;n = (3q + 1) \;or\; n = (3q + 2){/tex}.
Case I If n = 3q then n is clearly divisible by 3.
Case II If {tex}\;n = (3q + 1)\; {/tex} then {tex} (n + 2)= (3q + 1 + 2) = (3q + 3) = 3(q + 1){/tex}, which is clearly divisible by 3.
In this case, {tex}(n + 2){/tex} is divisible by 3.
Case III If n = {tex}(3q + 2){/tex} then {tex}(n + 1) = (3q + 2 + 1) = (3q + 3) = 3(q + 1){/tex}, which is clearly divisible by 3.
In this case,{tex} (n + 1){/tex} is divisible by 3.
Hence, one and only one out of {tex}n, (n + 1){/tex} and {tex}(n + 2){/tex} is divisible by 3.

  • 1 answers

Sia ? 6 years, 4 months ago

Let the AP be a - 4d, a - 3d, a - 2d, a - d, a, a + d, a + 2d, a + 3d,...
Then, a3 = a - 2d, a7 = a + 2d
{tex} \Rightarrow {/tex} a3 + a7 = a - 2d + a + 2d = 6
{tex} \Rightarrow {/tex} 2a = 6 {tex} \Rightarrow {/tex} a = 3 ..... (i)
Also (a - 2d) (a + 2d) = 8
{tex} \Rightarrow {/tex} a2 - 4d2 = 8 {tex} \Rightarrow {/tex} 4d2 = a2 - 8 {tex} \Rightarrow {/tex} 4d2 = 32 - 8
{tex} \Rightarrow {/tex} 4d2 = 1 {tex} \Rightarrow {d^2} = \frac{1}{4} \Rightarrow d = \pm \frac{1}{2}{/tex}
Taking {tex}d = \frac{1}{2},{/tex}
{tex}{S_{16}} = \frac{{16}}{2}\left[ {2 \times (a - 4d) + (16 - 1)d} \right]{/tex}{tex} = 8\left[ {2 \times \left( {3 - 4 \times \frac{1}{2}} \right) + 15 \times \frac{1}{2}} \right]{/tex}
{tex} = 8\left[ {2 + \frac{{15}}{2}} \right] = 8 \times \frac{{19}}{2} = 76{/tex}
Taking {tex}d = \frac{{ - 1}}{2}{/tex},
{tex}{S_{16}} = \frac{{16}}{2}\left[ {2 \times (a - 4d) + (16 - 1)d} \right]{/tex}{tex} = 8\left[ {2 \times \left( {3 - 4 \times \frac{1}{2}} \right) + 15 \times \frac{1}{2}} \right]{/tex}
{tex} = 8\left[ {\frac{{20 - 15}}{2}} \right] = 8 \times \frac{5}{2} = 20{/tex}
{tex}\therefore {/tex} S16 = 20 and 76

  • 1 answers

Mayank Sharma 6 years, 4 months ago

Break down al the things in sin, cos
  • 0 answers
  • 1 answers

Iron Man 6 years, 4 months ago

please write qiestion clear
  • 2 answers

Iron Man 6 years, 4 months ago

All chapters are important because board asks from all chapters

Avnish Kumar 6 years, 4 months ago

Trigonometry triangle
  • 4 answers

Aadya Singh 6 years, 4 months ago

Yes

Om Nayak 6 years, 4 months ago

yes

Virat Sharma 6 years, 4 months ago

yes

Shradha Pandey 6 years, 4 months ago

Yes
  • 1 answers

Sia ? 6 years, 4 months ago

The given equations are
4x - 5y = k 
So, 4x - 5y - k = 0......... (i)
And 2x - 3y = 12
So, 2x - 3y - 12 = 0 ......... (ii)
The system of linear equations is in the form of
a1x + b1y + c1 = 0
a2x + b2y + c2 = 0
Compare (i) and (ii), we get
a1= 4 ,b1= -5, c1 = -k,
a2=2 ,b2= -3 ,c2 = -12
For a unique solution, we must have
{tex} \frac { a _ { 1 } } { a _ { 2 } } \neq \frac { b _ { 1 } } { b _ { 2 } }{/tex}
{tex}\frac { 4 } { 2 } \neq \frac { - 5 } { - 3 }{/tex}
{tex}2 \neq \frac { 5 } { 3 } \Rightarrow 6 \neq 5{/tex}
Thus, for all real value of k, the given system of equations will have a unique solution.

  • 0 answers
  • 3 answers

❤ 753 6 years, 4 months ago

Hme kya pta..it is upto to ur school..

Archana Jaiswal 6 years, 4 months ago

Ch 1,2,3,4,5,6,7,14,15

Aman Singh 6 years, 4 months ago

Hello koi h kya answer dene ke liye
  • 5 answers

?? Anonymous??? 6 years, 4 months ago

Give me a thanks

?? Anonymous??? 6 years, 4 months ago

Use quadratic formula

?? Anonymous??? 6 years, 4 months ago

It is (1+√17)/2 and( 1-√17)/2

?? Anonymous??? 6 years, 4 months ago

I've found it

?? Anonymous??? 6 years, 4 months ago

I guess there are no zeroes for the above question
  • 1 answers

Ankit ?? Kumar 6 years, 4 months ago

3
  • 1 answers

Anamika Gangwar 6 years, 4 months ago

AP = 10 ,7,4 a = 10 ; d = 7-10=-3 and n = 30 An = a+(n-1)d = 10+(30-1)-3 =10+29×(-3) =10-87 = -67 30th term og given AP is -67
  • 1 answers

Sia ? 6 years, 3 months ago

Given that the pth, qth and rth terms of an AP be a, b, c respectively.
Suppose, x be the first term and d be the common difference of the given arithmetic progression. Therefore,
Tp =  x+(p-1)d, Tq =x+(q-1)d and Tr =x+(r-1)d

Now, T= a {tex}\Rightarrow{/tex} x+(p-1)d = a ....(i)
T= b {tex}\Rightarrow{/tex} x+(q-1)d = b....(ii)
T= c {tex}\Rightarrow{/tex} x+(r-1)d = c....(iii)
On multiplying (i) by (q-r), (ii) by (r-p) and (iii) by (p-q), we get,
(q-r)[x+(p-1)d]=a(q-r)....(iv)
(r-p)[x+(q-1)d]=b(r-p)....(v)
(p-q)[x+(r-1)d]=c(p-q)....(vi)
Now adding we get,
a(q - r) + b(r - p) + c(p - q) = x{(q - r) + (r - p) + (p - q)} + d{(p - 1)(q - r)+ (q - 1)(r - p)+ (r - 1)(p - q)}
= (x {tex}\times{/tex} 0) + (d {tex}\times{/tex} 0) = 0
Therefore, a(q - r) + b(r - p) + c(p - q) = 0.
Hence proved.

  • 1 answers

Anamika Gangwar 6 years, 4 months ago

Sin^theta
  • 1 answers

Luv Sharma 6 years, 4 months ago

Chapter 5

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App