Ask questions which are clear, concise and easy to understand.
Ask QuestionPosted by Raj Chaudhari 6 years, 4 months ago
- 1 answers
Posted by Tharki Baba Om!! 6 years, 4 months ago
- 3 answers
Posted by Sristi Pandey 6 years, 4 months ago
- 2 answers
Gaurav Seth 6 years, 4 months ago
Answer:
The value of k is 3.
Step-by-step explanation:
The given quadratic equation is
It is given that one root of this quadratic equation is reciprocal of the other.
Let the roots be .
We know that,
....(1)
....(2)
Using equation (2) we get
Multiply both sides by 3.
Therefore the value of k is 3.
Posted by Amrit Keshari Patra 6 years, 4 months ago
- 2 answers
Vanshika Goyal 6 years, 4 months ago
Khushi Keshri 6 years, 4 months ago
Posted by Tulika Dhar 6 years, 4 months ago
- 3 answers
Harsh Mishra 6 years, 4 months ago
As the degree of Sin Theta varies the value also varies, O.K.
Posted by Siraj Kanjaria 6 years, 4 months ago
- 1 answers
Posted by Sanket Arjun 6 years, 4 months ago
- 1 answers
Sia ? 6 years, 4 months ago
Let a be the first term and d be the common difference of the given A.P. Then,
Sm = Sn
{tex}\Rightarrow \quad \frac { m } { 2 } \{ 2 a + ( m - 1 ) d \} = \frac { n } { 2 } \{ 2 a + ( n - 1 ) d \}{/tex}
{tex} \Rightarrow{/tex} 2a (m - n) + {m (m - 1) - n (n - 1)} d = 0
{tex} \Rightarrow{/tex} 2a (m - n) + {m2 - m - n2 + n}d = 0
{tex} \Rightarrow{/tex} 2a (m - n) + {(m2 - n2) - (m - n)} d = 0
{tex} \Rightarrow{/tex}2a (m - n) + {(m - n) (m +n) - (m - n)} d = 0
{tex} \Rightarrow{/tex} (m - n) {2a + (m + n - 1)d} = 0
{tex} \Rightarrow{/tex} 2a + (m + n - 1)d = 0 {tex} [ \because m - n \neq 0 ]{/tex} ...(i)
Now, {tex} S _ { m + n } = \frac { m + n } { 2 } \{ 2 a + ( m + n - 1 ) d \} = \frac { m + n } { 2 } \times {/tex}0 = 0 [Using (i)]
Posted by Bir Singh 6 years, 4 months ago
- 4 answers
Bhumika Jindal 6 years, 4 months ago
Posted by Bir Singh 6 years, 4 months ago
- 5 answers
Ansuman Rathore 6 years, 4 months ago
Posted by #Sareef Balak 5 years, 8 months ago
- 5 answers
Posted by Nisha Sajeev 6 years, 4 months ago
- 2 answers
Posted by Jayaram Devadiga 6 years, 4 months ago
- 1 answers
Ansuman Rathore 6 years, 4 months ago
Posted by Bir Singh 6 years, 4 months ago
- 2 answers
Shuba Harini 6 years, 4 months ago
Posted by Krishnakant Malviya 6 years, 4 months ago
- 1 answers
Sanket Arjun 6 years, 4 months ago
Posted by Krishnakant Malviya 6 years, 4 months ago
- 1 answers
Sia ? 6 years, 4 months ago
Let the three angles of triangle which are in A.P. be a - d, a, a + d
Now, sum of the angles = 180°
{tex}\Rightarrow{/tex} a - d + a+ a + d = 180°
{tex}\Rightarrow{/tex} 3a = 180°
{tex}\Rightarrow{/tex} a = 60°
It is given that,
a + d= 2(a - d)
{tex}\Rightarrow{/tex} a + d = 2a - 2d
{tex}\Rightarrow{/tex} a = 3d
{tex}\Rightarrow{/tex} 60° = 3d
{tex}\Rightarrow{/tex} d = 20°
Thus, the angles of triangle are 40°, 60°, 80°.
Posted by Girish S 6 years, 4 months ago
- 2 answers
Posted by Sweta Singh 6 years, 4 months ago
- 0 answers
Posted by Sweta Singh 6 years, 4 months ago
- 6 answers
Ansuman Rathore 6 years, 4 months ago
Bharti Mittal 6 years, 4 months ago
Posted by Ritika Suryan 6 years, 4 months ago
- 0 answers
Posted by Sushil Verma 6 years, 4 months ago
- 1 answers
Sia ? 6 years, 4 months ago
mam = nan
m[a + (m - 1)d] = n [a + (n - 1)d]
{tex} \Rightarrow {/tex} ma + m2d - md = na + n2d - nd
{tex} \Rightarrow {/tex} a(m - n) + (m2 - n2)d - md + nd = 0
{tex} \Rightarrow {/tex} a(m - n) + (m - n) (m + n)d - (m - n)d = 0
{tex} \Rightarrow {/tex} (m - n) [a + (m + n - 1)d] = 0
{tex} \Rightarrow {/tex} a + (m + n - 1)d = 0
{tex} \Rightarrow {/tex} am+n = 0
Hence proved.
Posted by Sunita Bishowkarma 6 years, 4 months ago
- 1 answers
Posted by Narendra Narayan Mishra 6 years, 4 months ago
- 0 answers
Posted by A S?? 6 years, 4 months ago
- 5 answers
Posted by ᴹⁱˢˢ ✿Swaτi✿乂 6 years, 4 months ago
- 0 answers
Posted by Umar Ansari 6 years, 4 months ago
- 1 answers
ᴹⁱˢˢ ✿Swaτi✿乂 6 years, 4 months ago
Posted by Kuldeep Kumar 6 years, 4 months ago
- 1 answers
Sia ? 6 years, 4 months ago
Area of a remaining portion of the square = Area of square - (4 {tex}\times{/tex} Area of a quadrant + Area of a circle)
{tex}= 4 \times 4 - \left[ 4 \times \frac { 90 } { 360 } \times \frac { 22 } { 7 } \times 1 ^ { 2 } + \frac { 22 } { 7 } \times \left( \frac { 2 } { 2 } \right) ^ { 2 } \right]{/tex}
{tex}= 16 - 2 \times \frac { 22 } { 7 }{/tex}
{tex}= \frac { 68 } { 7 } \mathrm { cm } ^ { 2 }{/tex}

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Akanksha Tiwari 6 years, 4 months ago
2Thank You