No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 3 answers

Aditya Kumar 5 years, 3 months ago

3cm

Priya Yadav 5 years, 3 months ago

Which chapter is reduction in mathematics in 2020

Suryansh Dixit 5 years, 3 months ago

3 cm.
  • 1 answers

#?Abhishek...? . 5 years, 3 months ago

Please write in english and clearly...
  • 0 answers
  • 1 answers

Yogita Ingle 5 years, 3 months ago

Three digit number which leaves remainder 2 when divided by 5 is
102,107,112,117......997
This form an AP whose first term is =102, d=5
Let 997 is the n th term of AP i.e. an​=997
an​=a+(n−1)d
997=102+(n−1)5
5n=900
n=180
Sum of all three digits which leaves remainder 2 when divided by 5 is
Sn​=n/2 ​[2a+(n−1)d]
=180/2 ​[2×102(180−1)5]
=90[204+179×5]
=90[204+895]
=90×1099

=98910

  • 1 answers

Gaurav Seth 5 years, 3 months ago

HRD Minister Ramesh Nishank announced a major CBSE syllabus reduction for the new academic year 2020-21 on July 7 which was soon followed by an official notification by CBSE on the same.

Considering the loss of classroom teaching time due to the Covid-19 pandemic and lockdown, CBSE reduced the syllabus of classes 9 to 12 with the help of suggestions from NCERT.

The CBSE syllabus has been rationalized keeping intact the learning outcomes so that the core concepts of students can be retained.

Deleted syllabus of CBSE Class 10 Mathematics

 

  • 2 answers

Sukhada Malkhare 5 years, 3 months ago

Thanks a lot

Yogita Ingle 5 years, 3 months ago

Tan theta=4/3
tan theta=p/b
p=4,and b=3

by paithagoras theorem,
H=root under P^2+B^2
H=root under 4^2+3^2
H=root under 16+9
H=root under 25
H=5

sin theta=p/h
sin theta=4/5
cos theta=b/h
cos theta=3/5

sin theta+cos theta/sin theta-cos theta
=4/5+3/5 by 4/5-3/5
=4+3/5by4-3/5
=7/5by1/5
=7/5×5/1
=7/1
=7

  • 1 answers

Give Answer 5 years, 3 months ago

We know that √2=1.414 and√3 =1.732 So rational no between √2and √3 are 1.432 , 1.563 , 1.576 , 1.711 so on....
  • 1 answers

Tripti Tiwari 5 years, 3 months ago

Please anyone give me answer.
  • 2 answers

Yogita Ingle 5 years, 3 months ago

<article id="post-1316404">

According to Euclid’s Division Lemma if we have two positive integers a and b, then there exist unique integers q and r which satisfies the condition a = bq + r where 0 ≤ r ≤ b.

HCF is the largest number which exactly divides two or more positive integers.

Since 12576 > 4052

12576 = (4052 × 3) + 420

420 is a reminder which is not equal to zero (420 ≠ 0).

4052 = (420 × 9) + 272

271 is a reminder which is not equal to zero (272 ≠ 0).

Now consider the new divisor 272 and the new remainder 148.

272 = (148 × 1) + 124

Now consider the new divisor 148 and the new remainder 124.

148 = (124 × 1) + 24

Now consider the new divisor 124 and the new remainder 24.

124 = (24 × 5) + 4

Now consider the new divisor 24 and the new remainder 4.

24 = (4 × 6) + 0

Reminder = 0

Divisor = 4

HCF of 12576 and 4052 = 4.

</article>

Rohit Joshi 5 years, 3 months ago

The HCF of 12576 and 4052 is 4
  • 5 answers

Avatar ? 5 years, 3 months ago

13 &14

Pooja Jain 5 years, 3 months ago

13 and 14

Tanu Jain 5 years, 3 months ago

13 and 14

Ashhad Khanji 5 years, 3 months ago

13 and 14

Yogita Ingle 5 years, 3 months ago

Let the first number be x and the second number is 27 - x.
Therefore, their product = x (27 - x)
It is given that the product of these numbers is 182.
Therefore, x(27 - x) = 182
⇒ x2 – 27x + 182 = 0
⇒ x2 – 13x - 14x + 182 = 0
⇒ x(x - 13) -14(x - 13) = 0
⇒ (x - 13)(x -14) = 0
Either x = -13 = 0 or x - 14 = 0
⇒ x = 13 or x = 14
If first number = 13, then
Other number = 27 - 13 = 14
If first number = 14, then
Other number = 27 - 14 = 13
Therefore, the numbers are 13 and 14.

  • 1 answers

Yogita Ingle 4 years, 5 months ago

Applying Euclid 's division algorithm,

H.C.F of 420 and 272
 

Now, The remainder becomes 0.

So, HCF of 420 and 272 is 4.

Applying fundamental theorem of arithmetic for verifying,

The prime factors are
 

Therefore, HCF of 420 and 272 is 4.

 

  • 1 answers

Yogita Ingle 5 years, 3 months ago

The constant plynomial f(x) = 0 is called zero polynomial.

A real number 'a' is called a zero of polynomial p(x) = 0

  • 3 answers

Ashhad Khanji 5 years, 3 months ago

C= 90°

Nilu Kumari 5 years, 3 months ago

Much bmdbmn

Yogita Ingle 5 years, 3 months ago

Triangle ABC is Isosceles

and it is given

AC = BC

AB² = 2 AC²

= AC² + AC²

AC = BC so we can write,

AB² = BC² + AC²

This is similar to Pythagoras Theorem

AB = hypotenuse

BC = Perpendicular or Base

AC = Base or Perpendicular

Therefore

C = 90°

  • 1 answers

Gaurav Seth 5 years, 3 months ago

Given equations are ,

 

10/( x + y ) + 2/( x - y ) = 4 ---( 1 )

 

15/( x + y ) - 5/( x - y ) = -2 --( 2 )

 

Let ,

 

1/(x+y) = a , 1/(x-y) = b

 

10a + 2b = 4

 

Divide each term with 2 , we get

 

5a + b = 2

 

=> b = 2 - 5a ----( 3 )

 

15a - 5b = -2 -----( 4 )

 

Substitute b = 2 - 5a in equation

 

( 4 ) , we get

 

15a - 5( 2 - 5a ) = -2

 

=> 15a - 10 + 25a = -2

 

=> 40a = -2 + 10

 

=> 40a = 8

 

=> a = 8/40

 

=> a = 1/5

 

Put a = 1/5 in equation ( 3 ) , we

 

get

 

b = 2 - 5 × 1/5

 

=> b = 2 - 1

 

b = 1

 

Therefore ,

 

1/( x + y ) = 1/5 => x + y = 5 --( 5 )

 

1/(x-y) = 1/1 => x - y = 1 ---( 6 )

 

Add equations ( 5 ) and ( 6 ) ,

 

We get

 

2x = 6

 

=> x = 6/2 = 3 ,

 

Put x = 3 in equation ( 5 ) , we get

 

3 + y = 5


 

=> y = 5 - 3 = 2

 

Therefore ,

 

x = 3 , y = 2

  • 1 answers

Gaurav Seth 5 years, 3 months ago

The angle of a quadrilateral are in Arithmetic Progression, now as there are four angles, the greatest of all the angles is double to that of smallest angles. Then to find the 4 angles of the quadrilateral,  the angles can be written as (x-3d)(x-d)(x+d)(x+3d)

 

The common difference in A.P. = d

 

Therefore, the sum of the four angles should be equal to that of 360°

 

Hence, (x-3d)+(x-d)+(x+d)+(x+3d)=360°

 

4x=360°

 

x=90°

 

Let (x+3d) be more than (x-3d)

 

Putting x = 90 degree in the equation x+3d = 2 (x-3d)

 

Then, 90+3d = 2 (90-3d)

 

9d=90;d=10

 

Hence, the common difference is 10

 

Therefore putting the value of  x=90° and  d=10 in (x-3d)+(x-d)+(x+d)+(x+3d)=360°

 

The angles are 60, 80, 100, and 120 of the quadrilateral. which are in AP.

  • 1 answers

Meghna Thapar 5 years, 3 months ago

If a line is drawn parallel to one side of a triangle and it intersects the other two sides at two distinct points then it divides the two sides in the same ratio. Given : In ∆ABC , DE || BC and intersects AB in D and AC in E. ... between the same || lines. The intercept theorem, also known as Thales' theorem (not to be confused with another theorem with the same name) or basic proportionality theorem, is about ratios of various line segments that are created if two intersecting lines are intercepted by a pair of parallels.

  • 1 answers

Gaurav Seth 5 years, 3 months ago

 

Given, sum of first m terms of an A.P. is n.

Also, sum of first n terms is m.

Subtracting (2) from (1),

 

Hence, the sum of its first (m + n) terms is -(m + n).

  • 0 answers
  • 3 answers

Naman Singh 5 years, 2 months ago

Who helped lencho

Gaurav Seth 5 years, 3 months ago

Let us assume that 4-5√2 is be rational.

=> 4-5√2 = a/b [ where, a,b belongs to Z]

=> -5√2 = a/b -4

=> √2 = 4/5 -a/b

L.H.S = irrational number as √2 is an irrational number .

R.H.S = rational number

Hence, R.H.S ≠ L.H.S

Therefore, our assumption is wrong & 4-5√2 is an irrational number.

Naman Singh 5 years, 3 months ago

Answer my question warna i delete this app
  • 1 answers

Gaurav Seth 5 years, 3 months ago

Given f(x) = x^4 - 11x^2 + 34x - 12.

Given g(x) = x - 2.

Now, we need to divide f(x) by g(x).


          x^3 + 2x^2 - 7x + 20
        -----------------------------------
x - 2) x^4          - 11x^2 + 34x - 12

         x^4 - 2x^3

         ---------------------------------------

                  2x^3 - 11x^2 + 34x - 12

                  2x^3 - 4x^2

         -------------------------------------------

                             -7x^2 + 34x - 12

                             - 7x^2 + 14x - 12

             -------------------------------------

                                           20x - 12

                                           20x -40

                 ------------------------------------

                                                   28


We know that Dividend = Divisor * Quotient + Remainder

 = > (x - 2) * (x^3 + 2x^2 - 7x + 20) + 28

= > x^4 + 2x^3 - 7x^2 + 20x - 2x^3 - 4x^2 + 14x - 40 + 28

= > x^4 - 11x^2 + 34x - 12

= > Dividend

  • 2 answers

Gaurav Seth 5 years, 3 months ago

Given f(x) = x^4 - 11x^2 + 34x - 12.

Given g(x) = x - 2.

Now, we need to divide f(x) by g(x).


          x^3 + 2x^2 - 7x + 20
        -----------------------------------
x - 2) x^4          - 11x^2 + 34x - 12

         x^4 - 2x^3

         ---------------------------------------

                  2x^3 - 11x^2 + 34x - 12

                  2x^3 - 4x^2

         -------------------------------------------

                             -7x^2 + 34x - 12

                             - 7x^2 + 14x - 12

             -------------------------------------

                                           20x - 12

                                           20x -40

                 ------------------------------------

                                                   28


We know that Dividend = Divisor * Quotient + Remainder

 = > (x - 2) * (x^3 + 2x^2 - 7x + 20) + 28

= > x^4 + 2x^3 - 7x^2 + 20x - 2x^3 - 4x^2 + 14x - 40 + 28

= > x^4 - 11x^2 + 34x - 12

= > Dividend

Naman Singh 5 years, 3 months ago

5
  • 2 answers

Kajal Sikarwar 5 years, 3 months ago

(1 answer

Yogita Ingle 5 years, 3 months ago

( sin ² 63° + sin ² 27° ) / ( cos ² 17° + cos ² 73° )
= { sin ² 63° + sin ² ( 90 - 63 ) ° } / { cos ² 17° + cos ² ( 90 - 17 ) ° }
= ( sin ² 63° + cos ² 63° ) / ( sin ² 17° + cos ² 17° )
= 1 / 1
= 1

  • 1 answers

Gaurav Seth 5 years, 3 months ago

Given:

sec θ + tan θ = x

To find:

Sec θ = ?

Solution:

sec θ + tan θ = x --- eq 1

sec θ = x - tan  θ

Squaring both sides -  

sec θ = x² - 2x² tan θ + tan²θ

sec² θ - tan² θ = x - 2xtan  θ

1 = x²  - 2xtan  θ

tan θ = x²  - 1/2x

Substituting value in eq 1  

sec θ + x² -1/2x = x

sec θ = x²  - x-1/2x  

= 2x² - x²  +1/2x

sec θ = x²  + 1/2x

Answer : The value of sec θ = x²  + 1/2x

  • 4 answers

Pratik Jain 5 years, 3 months ago

50 is wrong

Pratik Jain 5 years, 3 months ago

Answer is 42

Swati Bansal 5 years, 3 months ago

50

#?Abhishek...? . 5 years, 3 months ago

According to my thinking answer is '50'.
  • 1 answers

Gaurav Seth 5 years, 3 months ago

HRD Minister Ramesh Nishank announced a major CBSE syllabus reduction for the new academic year 2020-21 on July 7 which was soon followed by an official notification by CBSE on the same.

Considering the loss of classroom teaching time due to the Covid-19 pandemic and lockdown, CBSE reduced the syllabus of classes 9 to 12 with the help of suggestions from NCERT.

Deleted syllabus of CBSE Class 10 Mathematics

 

 

  • 1 answers

Yogita Ingle 5 years, 3 months ago

X2+20x+100

= X+ 10x + 10x +100

= x ( x+ 10) + 10 (x + 10)

= (x +10) (x +10)

= ( x + 10)2

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App