No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Yogita Ingle 5 years, 3 months ago

Comparing with standard quadratic equation ax2 + bx + c = 0

a = 2, b = 0, c = -11

Discriminant D = b2 – 4ac

= (0)2 – 4.2.(-11)

= 0 + 88

= 88

  • 1 answers

Gaurav Seth 5 years, 3 months ago

7. To find out the concentration of SO2 in the air (in parts per million, i.e., ppm), the data was collected for 30 localities in a certain city and is presented below:

Concentration of SO2 ( in ppm) Frequency
0.00 – 0.04 4
0.04 – 0.08 9
0.08 – 0.12 9
0.12 – 0.16 2
0.16 – 0.20 4
0.20 – 0.24 2

Find the mean concentration of SO2 in the air.

Solution:

To find out the mean, first find the midpoint of the given frequencies as follows:

Concentration of SO(in ppm) Frequency (fi) Mid-point (xi) fixi
0.00-0.04 4 0.02 0.08
0.04-0.08 9 0.06 0.54
0.08-0.12 9 0.10 0.90
0.12-0.16 2 0.14 0.28
0.16-0.20 4 0.18 0.72
0.20-0.24 2 0.20 0.40
Total Sum fi = 30   Sum (fixi) = 2.96

The formula to find out the mean is

Mean = x̄ = ∑fixi /∑fi

= 2.96/30

= 0.099 ppm

Therefore, the mean concentration of SO2 in air is 0.099 ppm.

  • 2 answers

Vishakha Girl 5 years, 3 months ago

Thanks

Gaurav Seth 5 years, 3 months ago

(xii) √2, √8, √18, √32 …

Here,

a2 – a1 = √8-√2  = 2√2-√2 = √2

a3 – a2 = √18-√8 = 3√2-2√2 = √2

a4 – a3 = 4√2-3√2 = √2


Since, an+1 – an or the common difference is same every time.

Therefore, d = √2 and the given series forms a A.P.

Hence, next three terms are;

a5 = √32+√2 = 4√2+√2 = 5√2 = √50

a6 = 5√2+√2 = 6√2 = √72

a7 = 6√2+√2 = 7√2 = √98

  • 1 answers

Gaurav Seth 5 years, 3 months ago

Class 10 Maths Exercise 6.3

10. CD and GH are respectively the bisectors of ACB and EGF such that D and H lie on sides AB and FE at ABC and EFG respectively. If ABC FEG, show that:

(i) 

(ii) DCB HE

(iii) DCA HGF

Ans. We have, ABC  FEG

 A = F………(1)

And C = G

 C = G

 1 = 3 and 2 = 4 ……….(2)

[CD and GH are bisectors of C and G

respectively]

 In s DCA and HGF, we have

A = F[From eq.(1)]

2 = 4[From eq.(2)]

 By AA-criterion of similarity, we have

DCA  HGF

Which proves the (iii) part

We have,DCA  HGF

 

Which proves the (i) part

In s DCA and HGF, we have

1 = 3[From eq.(2)]

B = E[ DCB  HE]

Which proves the (ii) part

  • 1 answers

#?Abhishek...? . 5 years, 3 months ago

That number which is divisible by 1 or itself is said to be prime number E.g_ 1,2 ,3,5,7,11......?
  • 2 answers

Sonu Gop 5 years, 3 months ago

Contact me on whats app for any type of solution of phy,che,bio and math

Gaurav Seth 5 years, 3 months ago

Post the question

  • 1 answers

Yogita Ingle 5 years, 3 months ago

x2-3x+5=(x+5)2
x- 3x+5 = x + 10x + 25

x2 - x2 -3x - 10x + 5 - 25 = 0
- 13x - 20 = 0

It's not a quadratic equation.

  • 1 answers

Gaurav Seth 5 years, 3 months ago

 

LHS =   

=  RHS

 

OR

LHS

=sin a -2sin ^3 a/ 2cos^3 a + cos a
=sin a (1-2sin^2a)/ cos a ( 2cos2a+1)
=sin a/cos a × 1-2sin2a/2cos2a+1
=tan a × 2(1-sin2a)/2(1-sin2 a)+1
=tana ×1/1
=tan a=RHS

  • 1 answers

Niharika Raj 5 years, 3 months ago

No according to converse of Pythagoras theorem If H2 = p2 + b2 then the triangle is right angle..... So, in this triangle square of hypotenuse is not equal to sum of the squares of perpendicular and base..... ? That's all I hope it is helpful
  • 0 answers
  • 1 answers

Love Preet 5 years, 3 months ago

Sry,don't know bro
  • 2 answers

Rohit Kumar 5 years, 3 months ago

Sum of the first n term = 4n - n^2 Sn = 4n-n^2 then n=1 ,4×1-1^2 =3 the sum of first term is 3 then n=2 , 4×2-2^2=4 the sum of 2 term is 4 then second term = sum of 2 term - sum of 1 term = 4 -3 = 1 then a = 3 , a+d=1 then d =-2 then n term is a+ (n-1)×d = 3+(n-1)×-2 = 5 -2n

Gaurav Seth 5 years, 3 months ago

We have given that
Sum of the first n terms = 4n – n2
⇒ Sn = 4n – n2

Sn –1 = 4(n – 1) – (n – 1)2
= (4n – 4) – (n2 + 1 – 2n)
= 4n – 4 – n2 – 1 + 2n
= 6n – n2 – 5
∴ nth term = Sn – Sn – 1
= (4n – n2) – (6n – n2 – 5)
= 4n – n2 – 6n + n2 + 5
= 5 –2n.

  • 1 answers

Gaurav Seth 5 years, 3 months ago

We have given that
Sum of the first n terms = 4n – n2
⇒ Sn = 4n – n2

Sn –1 = 4(n – 1) – (n – 1)2
= (4n – 4) – (n2 + 1 – 2n)
= 4n – 4 – n2 – 1 + 2n
= 6n – n2 – 5
∴ nth term = Sn – Sn – 1
= (4n – n2) – (6n – n2 – 5)
= 4n – n2 – 6n + n2 + 5
= 5 –2n.

  • 3 answers

Syed Sadiq Ahamed 5 years, 3 months ago

The sum of hypotenuse is equal to the sum of other two side of triangle is called pythagoras theorem. AC²=AB²+BC²

Gaurav Seth 5 years, 3 months ago

 

Pythagoras Theorem

Statement: In a right angled triangle, the square of the hypotenuse is equal to the sum of squares of the other two sides.

 

Given: A right triangle ABC right angled at B.

To prove: AC2 = AB2 + BC2

Construction: Draw BD AC

Proof :

We know that: If a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse, then triangles on both sides of the perpendicular are similar to the whole triangle and to each other.

ADB ABC

So, (Sides are proportional)

Or, AD.AC = AB... (1)

Also, BDC ABC

So, 

Or, CD. AC = BC... (2)

Adding (1) and (2),

AD. AC + CD. AC = AB2 + BC2

AC (AD + CD) = AB2 + BC2

AC.AC = AB2 + BC2

AC2 = AB2 + BC2

Hence Proved.

Confusion ??? Master ??? 5 years, 3 months ago

Hypotenuse^2 = base ^ 2 + altitude ^ 2
  • 3 answers

Love Preet 5 years, 3 months ago

How can i help u?

Neha Singh 5 years, 3 months ago

What's the question u are asking help for

Shubh Mishra 5 years, 3 months ago

What is the question
  • 1 answers

Love Preet 5 years, 3 months ago

What?
  • 1 answers

Love Preet 5 years, 3 months ago

Why?
  • 1 answers

Love Preet 5 years, 3 months ago

But u can't share a pic here..
  • 3 answers

Syed Sadiq Ahamed 5 years, 3 months ago

No, the trigonometric values are never calculated as minus,

Madhu Kaushik 5 years, 3 months ago

see the length will always be positive

Navnidhi Gandhi 5 years, 3 months ago

_+ root 1-sin² A .......why it can't be in minus
  • 0 answers
  • 1 answers

Gaurav Seth 5 years, 3 months ago

A n s w e r :
t a n (x + 30 °) = 1

tan (x + 30°) = tan 45°

(x + 30 °) = 45 °

x = 15 °

  • 3 answers

Syed Sadiq Ahamed 5 years, 3 months ago

y=2x,x=2 so y=2x =2(2)=4,y=4

Confusion ??? Master ??? 5 years, 3 months ago

4

Aryavir Malik 5 years, 3 months ago

Value of y=4
  • 1 answers

#?Abhishek...? . 5 years, 3 months ago

Please write clearly...
  • 2 answers

Amir Inamdar 5 years, 3 months ago

Yes 8*n will not end with zero because , the number will end with zero then it's factors should 2and5

Yogita Ingle 5 years, 3 months ago

We know 8n = (23)n = 23n

If 8n end with zero then 10 is factor of 8n.

 8n = 23n = (5)(2)

 5 is factor of 2, which is a contradiction

So, our assumption is wrong. Hence 8n cannot end with zero.

  • 2 answers

Aditya Kumar Singh 5 years, 3 months ago

Nanq

Yogita Ingle 5 years, 3 months ago

The sine function forms a wave that starts from the origin

  • sin θ = 0 when θ = 0 ˚ , 180˚ , 360˚ .
  • Maximum value of sin θ is 1 when θ = 90 ˚. Minimum value of sin θ is –1 when θ = 270 ˚. So, the range of values of sin θ is –1 ≤ sin θ ≤ 1.
  • 0 answers
  • 3 answers

Anupama ?? 5 years, 3 months ago

0.285714 285714…..…...................

Sanskriti Sans 5 years, 3 months ago

0.28

Kukatla Ajith Kumar Yadav Yadav 5 years, 3 months ago

3.5 is the answer
  • 1 answers

Madhav Emineni 5 years, 3 months ago

Let An=35 Given that, A=-34 D=4 (since, [-30-(-34)=4]) So, An=A+(n-1)D 35=-34+(n-1)4 =-34+4n-4 =-38+4n => 4n-38=35 =>4n=35+38 =>n=73/4 But here n is number of digits therefore 35 cannot be the number of this A.P

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App