No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Gargi Nawghade 5 years, 3 months ago

100x²-81 = 0 => 100x² = 81 => x² = 81/100 => x = +/- _/81/100 => x= +/- 9/10 So, the zeroes are 9/10 , -9/10

Aditya Vavhal 5 years, 3 months ago

It can be solve by factorzation method
  • 1 answers

Devansh Pandey 5 years, 3 months ago

P/H + B/H
  • 1 answers

Palak Gupta 5 years, 3 months ago

X²-√3² using identity (a+b) (a-b) =a²-b² a=x , b=√3 Putting value in identity (X+√3) (x-√3) =x²-√3² X+√3=0 X=-√3 X-√3=0 X=√3 Zeroes are -√3, √3 Hope you like this
  • 2 answers

Lifes Crush 5 years, 3 months ago

Gaurav, you always help everyone. I want to know your class. Can you please....

Gaurav Seth 5 years, 3 months ago

x2 – 3x – 10
x2 - 5x + 2x - 10
x(- 5) + 2(x - 5)
= (x - 5)(x + 2)
Roots of this equation are the values for which (x - 5)(x + 2) = 0

∴ x - 5 = 0 or x + 2 = 0

⇒ x = 5 or x = -2

  • 1 answers

Santosh Vijay 5 years, 1 month ago

10
  • 1 answers

Khushi Ramchandani 5 years, 3 months ago

Put the values of p , q and r in the equation given , then you will get the answer i.e. LHS =RHS
  • 1 answers

Palak Gupta 5 years, 3 months ago

Using quadratic formula X= -b±√b²-4ac X= -5± √(5) ²-4*1*10 X= -5±√25-40 X= -5± √15 X= -5±3.8 By taking (+) X= -5+3.8 X= -1. 2 By taking (-) X= -5-3.8 X= -8. 8
  • 1 answers

Khushi Ramchandani 5 years, 3 months ago

AB=PQ ( sides of the same triangle) AC=PR (sides of the same triangle) BC=QR (sides of the same triangle) Therefore, ABC congruence to PQR ( by sss test )
  • 1 answers

Anurag Prajapati 5 years, 3 months ago

P(x)=x²-(Sum of zeroes)x+(product of zeroes). Put these values in the bracket as given by question and you will get the correct quadratic equation.
  • 1 answers

Anurag Prajapati 5 years, 3 months ago

P(x)=x²-(Sum of zeroes)x+(product of zeroes). Put these values in the bracket as given by question and you will get the correct quadratic equation.
  • 3 answers

Vignesh Babu 5 years, 3 months ago

????????????? = ???? ?π? = ?? 2 x 22/7 x r = 22 r = 22 x 7/2 x 22 ? = ?/? In quadrant, angle of sector, = 90° Area of the quadrant = 90°/360° × πr^2 = 40 × 22/7 × 7/2 × 7/2 = 1540 cm^2 ᎻᎾᏢᎬ ᎷᎽ ᎯᏁᏕᏯᎬᏒ ᏯᎨᏝᏝ ᏰᎬ ᎻᎬᏝᏢƒυℓℓ

Muskan Kumari 5 years, 3 months ago

Circumference= 2×22/7×r 22=2×22/7×r r=22×7/2×22 r=7/2=3.5 cm Area of quadrant= 1/4×22/7×7/2×7/2 =77/8cm²

Gaurav Seth 5 years, 3 months ago

Formulas used = 
1. Circumference = 2 pie r
2. Area of Quadrant = 1/4 Pie r
²


Circumference = 2 Pie r
                   22 =  2 * 22/7 r
                   r = 22 * 7 / 22 * 2
                   r = 7/2 or 3.5 cm

Area Of Quadrant = 1/4 Pie r²
                              = (1/4) * (22/7 ) * 3.5 * 3.5
                              = 1 * 22 * 35 * 35  /  4 * 7 * 10 * 10
                              = 1 * 11 * 35 /  4 * 10
                              = 9.625 cm²
 

  • 2 answers

Siba Narayana Dash 5 years, 3 months ago

Above Answer is wrong ...

Gaurav Seth 5 years, 3 months ago

The given equations are: x + 6/y = 6 ……..(i) 

3x - 8/y = 5 ……..(ii) 

Putting 1/y = v, we get: 

x + 6v = 6 …….(iii) 

3x – 8v = 5 ……(iv) 

On multiplying (iii) by 4 and (iv) by 3, we get: 

4x + 24v = 24 ……..(v) 

9x – 24v = 15 ……..(vi) 

On adding (v) from (vi), we get: 

13x = 39 

⇒ x = 3 

On substituting x = 3 in (i), we get: 

3 + 6/y = 6 

⇒ 6/y = (6 – 3) = 3 

⇒ 3y = 6 

⇒ y = 2 

Hence, the required solution is x = 3 and y = 2. 

  • 0 answers
  • 4 answers

Piyush Agarwal 5 years, 3 months ago

Polynomial in the form of ax*2+bx+c

Anupama ?? 5 years, 3 months ago

Polynomial having the power 2

Anupama ?? 5 years, 3 months ago

The equation in the form of x2-ax-b

Roshesh Tembhurkar 5 years, 3 months ago

A polynomial in which the power is 2
  • 1 answers

Gaurav Seth 5 years, 3 months ago

Since we have given that

First we will find the zeroes of the quadratic polynomial.

We will use "Split the middle terms":

Now, Let, 

Now, we will verify the relationship between the zeroes and coefficient.

Sum of zeroes is given by

Hence, verified.

Roots of quadratic polynomials are 

  • 1 answers

Ankita Sah 5 years, 3 months ago

In ∆ PBD Tan30°=PD/BD 1/√3=PD/BD BD=PD√3____________by eq .1 In∆PAC Tan45°=PC/AC 1=PC/AC PC=PD+AC PD+DC=AC
  • 1 answers

Prajnasree Behera 5 years, 3 months ago

It is known that the gulab jamuns are similar to a cylinder with two hemispherical ends. So, the total height of a gulab jamun = 5 cm. Diameter = 2.8 cm So, radius = 1.4 cm ∴ The height of the cylindrical part = 5 cm–(1.4+1.4) cm =2.2 cm Now, total volume of One Gulab Jamun = Volume of Cylinder + Volume of two hemispheres = πr2h+(4/3)πr3 = 4.312π+(10.976/3) π = 25.05 cm3 We know that the volume of sugar syrup = 30% of total volume So, volume of sugar syrup in 45 gulab jamuns = 45×30%(25.05 cm3) = 45×7.515 = 338.184 cm3
  • 4 answers

Gargi Nawghade 5 years, 3 months ago

I hope you understand

Gargi Nawghade 5 years, 3 months ago

Ans: abx²=(a+b)²(x-1) abx²=(a+b)²x-(a+b)² abx²-(a+b)²x+(a+b)²=0 here, a=ab , b=-(a+b)² , c=(a+b)² By quadratic formula x=-b +/- _/b²-4ac /2a = -[-(a+b)²]+/- _/ [-(a+b)²]²-4(ab)(a+b)²] / 2ab =(a+b)²+/- _/(a+b)⁴-4ab(a+b)² / 2ab = (a+b)²+/- _/(a+b)²[(a+b)²-4ab] / 2ab = (a+b)²+/- (a+b)_/a²+b²+2ab-4ab /2ab = (a+b)²+/-(a+b)_/a²+b²-2ab / 2ab = (a+b)²+/-(a+b)_/(a-b)² / 2ab =(a+b)²+/-(a+b)(a-b) / 2ab = a²+b²+2ab +/- a2-b² /2ab So, x=a²+b²+2ab+a²-b² / 2ab = 2a²+2ab /2ab = 2a(a+b) /2ab = a+b/b OR x=a²+b²+2ab-(a²-b²) / 2ab =a²+b²+2ab-a²+b² / 2ab = 2b²+2ab / 2ab =2b(b+a) /2ab = a+b/a Thus, the value of x= a+b/b , a+b/a

Tejaswini Chandok 5 years, 3 months ago

Boubht baar try kara meine

Tejaswini Chandok 5 years, 3 months ago

Nhi hua yr
  • 2 answers

Tejaswini Chandok 5 years, 3 months ago

Given Equation is tanA + cotA = 4. On squaring both sides, we get = > (tanA + cotA)^2 = (4)^2 = > tan^2A + cot^2A + 2tanAcotA = 16 = > tan^2A + cot^2A + 2 * tanA * (1/tanA) = 16 = > tan^2A + cot^2A + 2 = 16 = > tan^2A + cot^2A = 16 - 2 = > tan^2A + cot^2A = 14. On squaring both sides, we get = > (tan^2A + cot^2A)^2 = (14)^2 = > tan^4A + cot^4A + 2 * tan^4A * cot^4a = 196 = > tan^4A + cot^4A + 2 * tan^4A * (1/tan^4A) = 196 = > tan^4A + cot^4A + 2 = 196 = > tan^4A + cot^4A = 196 - 2 = > tan^4A + cot^4A = 194.

Vansh Gupta 5 years, 3 months ago

Given Equation is tanA + cotA = 4. On squaring both sides, we get = > (tanA + cotA)^2 = (4)^2 = > tan^2A + cot^2A + 2tanAcotA = 16 = > tan^2A + cot^2A + 2 * tanA * (1/tanA) = 16 = > tan^2A + cot^2A + 2 = 16 = > tan^2A + cot^2A = 16 - 2 = > tan^2A + cot^2A = 14. On squaring both sides, we get = > (tan^2A + cot^2A)^2 = (14)^2 = > tan^4A + cot^4A + 2 * tan^4A * cot^4a = 196 = > tan^4A + cot^4A + 2 * tan^4A * (1/tan^4A) = 196 = > tan^4A + cot^4A + 2 = 196 = > tan^4A + cot^4A = 196 - 2 = > tan^4A + cot^4A = 194.
  • 2 answers

Tejaswini Chandok 5 years, 3 months ago

Yr woh toh mention kar diya ho tha tune

Tejaswini Chandok 5 years, 3 months ago

Which class
  • 3 answers

Gargi Nawghade 5 years, 3 months ago

Cos(a+b)=0 We know that, Cos 90 = 0 So, Cos(a+b) = Cos 90 => a+b = 90 => a = 90 - b Now, Sin(a-b) = Sin(90-b-b) = Sin(90-2b) = Cos 2b [ as Sin(90-x) = Cos x ] Thus, Sin(a-b) = Cos 2b

Rajesh Sharma 5 years, 3 months ago

cos (a+b) =0 => cos (a+b) = cos 90 => a+b = 90 => a = 90- b Now sin(a+b) = sin(90-b-b) = sin(90-2b) = cos 2b     [as sin (90 - x) = cos  x]

Yogita Ingle 5 years, 3 months ago

cos (a+b) =0

=> cos (a+b) = cos 90

=> a+b = 90

=> a = 90- b

Now

sin(a+b)

= sin(90-b-b)

= sin(90-2b)

= cos 2b     [as sin (90 - x) = cos  x]

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App