No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Gaurav Seth 4 years, 9 months ago

Answer:

The value of p(-x)+p(x) is 6.

Step-by-step explanation:

The given function is

           .... (1)

Substitute x=-x, it the given function.

         ..... (2)

Now add the equations (1) and (2).

Combined like terms.

Therefore the value of p(-x)+p(x) is 6.

  • 4 answers

Vivek Gupta 4 years, 9 months ago

35

Mohit Garg 4 years, 9 months ago

35 answer

Madhav Ladha 4 years, 9 months ago

Kesa class 10th mai aaya?

Bhaduram Hembra 4 years, 9 months ago

147*+258
  • 1 answers

Mohit Garg 4 years, 9 months ago

Yes this is true..... But what is ur question?
  • 1 answers

Yogita Ingle 4 years, 9 months ago

Let AOB be the sector with O as center.

Given: Radius =r=5.2 cm

Perimeter of sector =16.4 cm

So, OA+AB+OB=16.4

⇒5.2+5.2+AB=16.4

⇒AB=6 cm

Area of sector =1/2 ​rl

                        =1/2​×5.2×6

                         =15.6 cm2

  • 2 answers

Yogita Ingle 4 years, 9 months ago

Radius = 10.5 cm and Sector angle = 60°

Perimeter of a sector of a circle = [(theta/360°)*2πr] + (2r)

⇒[(60/360)*2*22/7*10.5] + (2*10.5)

⇒ 1*462/6*7 + 21

⇒ 462/42 + 21

⇒ 11 + 21

⇒ 32 cm

So, the perimeter of sector is 32 cm

Нαяѕнιтα 🖤 4 years, 9 months ago

32 cm
  • 2 answers

Нαяѕнιтα 🖤 4 years, 9 months ago

Thanks you

Shardul Kadam 4 years, 9 months ago

CHAPTER TOPICS REMOVED UNIT I-NUMBER SYSTEMS REAL NUMBERS  Euclid’s division lemma UNIT II-ALGEBRA POLYNOMIALS  Statement and simple problems on division algorithm for polynomials with real coefficients. PAIR OF LINEAR EQUATIONS IN TWO VARIABLES  cross multiplication method QUADRATIC EQUATIONS  Situational problems based on equations reducible to quadratic equations ARITHMETIC PROGRESSIONS  Application in solving daily life problems based on sum to n terms UNIT III-COORDINATE GEOMETRY COORDINATE GEOMETRY  Area of a triangle. UNIT IV-GEOMETRY TRIANGLES Proof of the following theorems are deleted  The ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.  In a triangle, if the square on one side is equal to sum of the squares on the other two sides, the angle opposite to the first side is a right angle. CIRCLES No deletion CONSTRUCTIONS  Construction of a triangle similar to a given triangle. UNIT V- TRIGONOMETRY INTRODUCTION TO TRIGONOMETRY  motivate the ratios whichever are defined at 0o and 90o TRIGONOMETRIC IDENTITIES Trigonometric ratios of complementary angles. HEIGHTS AND DISTANCES No deletion UNIT VI-MENSURATION AREAS RELATED TO CIRCLES  Problems on central angle of 120° SURFACE AREAS AND VOLUMES  Frustum of a cone. UNIT VI-STATISTICS & PROBABILITY STATISTICS  Step deviation Method for finding the mean  Cumulative Frequency graph PROBABILITY No deletion
  • 3 answers

Igl Praveen 4 years, 9 months ago

NamePerimeterTotal Surface AreaCurved Surface Area/Lateral Surface AreaVolumeFigureSquare4aa2—-—-Rectangle2(w+h)w.h—-—-Parallelogram2(a+b)b.h—-—-Trapezoida+b+c+d1/2(a+b).h—-—-Circle2 π rπ r2—-—-Ellipse2π√(a2 + b2)/2      π a.b—-—-Trianglea+b+c1/2 * b * h—-—-Cuboid4(l+b+h)2(lb+bh+hl)2h(l+b)l * b * hCube6a 6a24a2a3Cylinder—-2 π r(r+h)2πrhπ r2 hCone—-π r(r+l)π r l1/3π r2 hSphere—-4 π r24π r24/3π r3Hemisphere—-3 π r22 π r22/3π r3 

Najia Begum 4 years, 9 months ago

@Deep Arshnoor For all 3d shapes

Deep Arshnoor 4 years, 9 months ago

For which 3d shape??
  • 1 answers

Нαяѕнιтα 🖤 4 years, 9 months ago

Given:−​ \: \: \: \: \: \: \: P \: {({-4}, \: {6})} \: \: divides \: \: the \: \: line \: \: segment \: \: joining \: \: the \: \: point \: \: A \: {({-6}, \: {10})} \: \: and \: \: B \: {({3}, \: {-8})}P(−4,6)dividesthelinesegmentjoiningthepointA(−6,10)andB(3,−8) \underline\mathfrak{To \: \: Find:-}ToFind:−​ \: \: \: \: \: find \: \: the \: \: ratio.?findtheratio.? \underline\mathfrak{Solutions:-}Solutions:−​ \: \: \: \: \: \: \: {x} \: \: \: = \: \: \: {-4} \: \: \: \: \: \: \: \: {y} \: \: \: = \: \: \: {6}x=−4y=6 \: \: \: \: \: \: \: {x_1} \: \: \: = \: \: \: {-6} \: \: \: \: \: \: \: \: {y_1} \: \: \: = \: \: \: {10}x1​=−6y1​=10 \: \: \: \: \: \: \: {x_2} \: \: = \: \: {3} \: \: \: \: \: \: \: \: {y_2} \: \: = \: \: {-8}x2​=3y2​=−8 \: \: \: \: \: \fbox{{x} \: \: = \: \: \frac{{mx_2} \: + \: {nx_1}}{m \: + \: n} \: \: \: \: \: \: \: {y} \: \: = \: \: \frac{my_2} \: + \: {ny_1}{m \: + \: n}} \: \: \: \: \: \therefore {x} \: \: = \: \: \frac{{mx_2} \: + \: {nx_1}}{m \: + \: n}∴x=m+nmx2​+nx1​​ \: \: \: \: \: \leadsto {-4} \: \: = \: \: \frac{m \: {3} \: + \: n \: {-6}}{m \: + \: n}⇝−4=m+nm3+n−6​ \: \: \: \: \: \leadsto {-4m} \: - \: {4n} \: \: = \: \: {3m} \: + \: {(-6n)}⇝−4m−4n=3m+(−6n) \: \: \: \: \: \leadsto {-4m} \: - \: {4n} \: \: = \: \: {3m} \: - \: {6n}⇝−4m−4n=3m−6n \: \: \: \: \: \leadsto {-4m} \: - \: {3m} \: \: = \: \: {-6n} \: + \: {4n}⇝−4m−3m=−6n+4n \: \: \: \: \: \leadsto {-7m} \: \: = \: \: {-2n}⇝−7m=−2n \: \: \: \: \: \leadsto \frac{m}{n} \: \: = \: \: \frac{-2}{-7}⇝nm​=−7−2​ \: \: \: \: \: \leadsto {m} \: : \: {n} \: \: = \: \: {2} \: : \: {7}⇝m:n=2:7 \: \: \: \: \: \therefore {x} \: \: = \: \: \frac{{my_2} \: + \: {ny_1}}{m \: + \: n}∴x=m+nmy2​+ny1​​ \: \: \: \: \: \leadsto {6} \: \: = \: \: \frac{m \: {-8} \: + \: n \: {10}}{m \: + \: n}⇝6=m+nm−8+n10​ \: \: \: \: \: \leadsto {6m} \: - \: {6n} \: \: = \: \: {-8m} \: + \: {10n}⇝6m−6n=−8m+10n \: \: \: \: \: \leadsto {6m} \: - \: {8m} \: \: = \: \: {10n} \: - \: {6n}⇝6m−8m=10n−6n \: \: \: \: \: \leadsto {14m} \: \: = \: \: {4n}⇝14m=4n \: \: \: \: \: \leadsto \frac{m}{n} \: \: = \: \: \frac{2}{7}⇝nm​=72​ \: \: \: \: \: \leadsto {m} \: : \: {n} \: \: = \: \: {2} \: : \: {7}⇝m:n=2:7
  • 1 answers

Gaurav Seth 4 years, 9 months ago

Tan A = √2 - 1

Tan A = p / b { p: perpendicular , b:base}

h : hypotenuse

(√ 2 - 1 ) / 1 = p / b

p= √2 - 1 , b = 1

By pythagoras theorem ,

p² + b² = h²

(√2 - 1 )² + (1)² = h²

2 + 1 - 2√2 + 1 = h ²

h² = [4 - 2√2 ]

Sin A = p / h , Cos A = b / h

Sin A Cos A = ( p * b ) / h²
=> (√ 2 - 1 ) / ( 4 - 2 √2)
Rationalize Denomonator ,

=> ( √ 2 - 1 ) * ( 4 + 2 √2 ) / ( 4 - 2 √2 )(4 + 2 √2)

=> (4 √2 + 4 - 4 - 2√2 ) / ( 16 - 8 )

=> 2 √2 / 8
=> √2 / 4
Hence Proved

  • 2 answers

Neha Singh Rathore 4 years, 9 months ago

7/24 is the answer

Yogita Ingle 4 years, 9 months ago

 

In Δ ABC, B is at right angle.

Given, AB=24cm

BC=7cm

using Pythagoras theorem 

AB2+BC2=AC2

⇒(24)2+(7)2=AC2

⇒AC=(242)+(7)2​=576+49​=625​

⇒AC=25CM

sin A=BC​/AC

= 7​/25

  • 3 answers

Jashan Jot Kaur 4 years, 9 months ago

2 nd root 2

Shalesh Kumar 4 years, 9 months ago

(ii) root 2

Taniya Saini 4 years, 9 months ago

(ii)root 2 is correct
  • 1 answers

Siddhi Bhandari 4 years, 9 months ago

Yogita Ingle 1 year, 7 months ago let us assume that √7 be rational. then it must in the form of p / q  [q ≠ 0] [p and q are co-prime] √7 = p / q => √7 x q = p squaring on both sides => 7q2= p2  ------  (1) p2 is divisible by 7 p is divisible by 7 p = 7c  [c is a positive integer] [squaring on both sides ] p2 = 49 c2 ---------   (2) Subsitute p2 in equ (1) we get 7q2 = 49 c2 q2 = 7c2 => q is divisible by 7 thus q and p have a common factor 7. there is a contradiction as our assumsion p & q are co prime but it has a common factor. So that √7 is an irrational.
  • 3 answers

Нαяѕнιтα 🖤 4 years, 9 months ago

2,6

Siddhi Bhandari 4 years, 9 months ago

Let A(- 1, 0), B(3, 1),  C(2, 2) and D(x, y) be the vertices of a parallelogram ABCD taken in order.  Since, the diagonals of a parallelogram bisect each other. So, coordinate of the mid point of AC = coordinate of mid point of BD ⇒ [(-1 + 2)/2, (0 + 2)/2] = [(3 + x)/2, (y + 1)/2] ⇒ (1/2, 1) = [(3 + x)/2, (y + 1)/2] (3 + x)/2 = ½ ⇒  x = - 2 Also  (y + 1)/2 = 1 ⇒ y + 1 = 2 ⇒ y = 1 The fourth vertex of parallelogram = (- 2, 1).

Avni Soni 4 years, 9 months ago

(2,6)
  • 1 answers

Gaurav Seth 4 years, 9 months ago

In the question, we have to find the radius (r) of the circle.
We are given that a piece of wire 20 cm long is bent into the form of an arc of a circle subtending an angle of 60 degrees at its centre. So, here the arc length will be the same as 20 cm, as shown in the figure below.

Next, we know the arc length formula as arclength=θ360o×(2πr)arclength=θ360o×(2πr), here θθ is the angle subtended at the centre of the circle. So we have: θ=60oθ=60o and arclength=20cmarclength=20cm. So using the formula we will find the radius of the circle, as shown below:
⇒arclength=θ360o×(2πr)⇒20=60o360o×(2πr)⇒20=16×(2πr)⇒60=(πr)⇒r=60π⇒arclength=θ360o×(2πr)⇒20=60o360o×(2πr)⇒20=16×(2πr)⇒60=(πr)⇒r=60π
So we get the required radius of the circle as r=60πcmr=60πcm. 

  • 0 answers
  • 0 answers
  • 2 answers

Gaurav Seth 4 years, 9 months ago

HCF of two positive integers can be find using the Euclid’s Division Lemma algorithm
We know that for any two integers a. b. we can write following expression

a=bq + r , 0≤r<b
If r=0 .then
HCF( a. b) =b
If r≠0 , then
HCF ( a. b) = HCF ( b.r)
Again expressing the integer b.r in Euclid’s Division Lemma, we get
b=pr + r1
HCF ( b,r)=HCF (r,r1)

Similarly successive Euclid’s division can be written until we get the remainder zero, the divisor at that point is called the HCF of the a and b

  • HCF (a,b) =1 –  Then a and b are co primes.

  • Product of primes Theorem of Arithmetic – Composite Number = Product of Primes

  • HCF and LCM by prime factorization method:
    HCF = Product of the smallest power of each common factor in the numbers
    LCM = Product of the greatest power of each prime factor involved in the number

  • Important Formula HCF (a,b) X LCM (a,b) =a X b

  • Important concept for rational Number  – Terminating decimal expression can be written in the form p/2n5m

Gaurav Seth 4 years, 9 months ago

S. No Type of Numbers Description
1 Natural Numbers N = {1,2,3,4,5  >
It is the counting numbers
2 Whole number W= {0,1,2,3,4,5>
It is the counting numbers + zero
3 Integers All whole numbers including Negative number + Positive number  ……-4,-3,-2,-1,0,1,2,3,4,5… so on.
Like whole numbers, integers don’t include fractions or decimals.
4 Positive integers Z+ = 1,2,3,4,5, ……
5 Negative integers Z = -1,-2,-3,-4,-5, ……
6 Rational Number A number is called rational if it can be expressed in the form p/q where p and q are integers (q> 0).
Ex: P/q, 4/5
7 Irrational Number A number is called rational if it cannot be expressed in the form p/q where p and q are integers (q> 0).
Ex: √2, Pi, … etc
8 Real Numbers A real number is a number that can be found on the number line. Real Numbers are the numbers that we normally use and apply in real-world applications.
Real Numbers include Natural Numbers, Whole Numbers, Integers, Fractions, Rational Numbers and Irrational Numbers
  • 2 answers

Bhaduram Hembra 4 years, 9 months ago

My friends are going to the market

Bhaduram Hembra 4 years, 9 months ago

My friends are going to the market.
  • 1 answers

Tarannum Jahan 4 years, 9 months ago

Given:- a=7, d=10-7=3, n=7 We know that an=a+(n-1)×d a7=7+(7-1)×3 a7=7+6×3 a7=7+18 a7=25 Hence, the 7th term of an AP is 25 Ans
  • 1 answers

Yogita Ingle 4 years, 9 months ago

Given A.P: 84,80,76,72,...

First term (a) = 84,

We have to find when the first negative term appear in the A.P.

Therefore,

First negative term appear at 23 rd term in A.P

  • 1 answers

Bhaduram Hembra 4 years, 9 months ago

132 +2
  • 2 answers

Ajay Kumar 4 years, 9 months ago

K=3/5 hoga

Yogita Ingle 4 years, 9 months ago

1st term t1 = (k + 1).
2nd term t2 = 3k.
3rd term t3 = (4k + 2).
Given that t1,t2,t3 are in AP.
We know that when they are in AP, their common difference will be:
t2 - t1 = t3 - t2
3k - (k + 1) = (4k + 2) - 3k
3k - k - 1 = 4k + 2 - 3k
2k - 1 = k + 2
2k = k + 2 + 1
2k = k + 3
2k - k = 3
k = 3.
Therefore the value of k = 3.

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App