No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Gaurav Seth 4 years, 9 months ago

Given:

Here  in two triangles, sides of one triangle are proportional to the sides of other triangle.

Also their corresponding angles are equal and hence the two triangles are similar.

Construction:

Let us draw lines at E and F making the angles as marked in the diagram and meeting at G.

Proof:

Now, ΔABC and ΔGEF are equiangular and hence similar and so corresponding sides are in proportion.

         AB : BC = GE : EF

But    AB : BC = DE : EF          (Given)

So              GE = DE                  (1)

 Similarly,  AC : CB = GF : FE

But    AB : BC = DF : FE    (Given)

So              GF = DF                  (2)

 EF is common to both triangles DEF and GEF.          (3)

 

So from Eq (1), (2) and (3) we have

ΔDEF ≅ ΔGEF.

Therefore triangles ABC and DEF are equiangular and hence similar etc.

<button role="button" title="enlarge image"></button>

<button role="button" title="enlarge image"></button>

<button role="button" title="rotate image"></button>

<button role="button" title="rotate image"></button>

  • 1 answers

Laxmi S.P? 4 years, 9 months ago

What maths
  • 1 answers

Atuly Yadav 4 years, 9 months ago

LHS, (cot-cosec)² =(cos/sin-1/sin)² =(cos-1/sin)² =cos²+1-2cos/sin² =2-2cos-1+cos²/1-cos² =2(1-cos)-1(1-cos²)/1-cos² =2(1-cos)-1((1-cos)(1+cos))/(1-cos)(1+cos) =(1-cos)(2-1-cos)/(1-cos)(1+cos) Hence, (1-cos)/(1+cos) prove.
  • 1 answers

Yogita Ingle 4 years, 9 months ago

Mean of given observations = sum of given observations/ total number of observations
Mean of 25 observations = 27
∴ Sum of 25 observations = 27 × 25 = 675

If 7 is subtracted from every number, then the sum = 675 – (25 × 7) = 675 – 175 = 500
Then, new mean = 500/25 = 20

Thus, the new mean will be 20. 

  • 1 answers

Gaurav Seth 4 years, 9 months ago

  Class Interval          Frequency          Cumulative Frequency

     0 - 6                           4                                  4

     6 - 12                         x                                4 + x

    12 - 18                        5                                9 + x

    18 - 24                        y                                9 + x + y

     24 - 30                       1                               10 + x + y
______________________________________________
                                      20                                                 
______________________________________________

10 + x + y = 20

x + y = 20 - 10

x + y = 10

Median = 14.4 

So, Median class is 12 - 18

Median = l + [(N/2 - cf)*i]/f

l = Lower limit of the Median Class = 12

Class Interval = i = 6

Cumulative Frequency (cf) of the class before the Median Class = 4 + x

N = 20

N/2 = 20/2 = 10

f = frequency of the Median Class = 5

⇒ Median = l + [(N/2 - cf)*i]/2

⇒ 14.4 = 12 + {10 - (4 + x)*6]/5

⇒ 14.4 - 12 = {(10 - 4 - x)*6}/5

⇒ 2.4 = {(6 - x)*6}/5

⇒ 2.4 = (36 - 6x)/5

⇒ 2.4*5 = 36 - 6x

⇒ 12 = 36 - 6x

⇒ - 6x = 12 - 36

 - 6x = - 24

⇒ 6x = 24

x = 24/6

x = 4

Since, x + y = 10

4 + y = 10

y = 10 - 4

y = 6

So, the value of x is 4 and the value of y is 6.

  • 2 answers

Satyam Kumar Rajput 4 years, 9 months ago

Sin square theta/ cos square theta- sin square theta. (1/cos square theta - 1). Sin square theta. (Sec square theta - 1) . Sin square theta. As 1+tan square theta= sec square theta. So tan square theta. Sin square theta. Hence proved.

Satyam Kumar Rajput 4 years, 9 months ago

=
  • 2 answers

Bhanu Bhardwaj 4 years, 9 months ago

Give me answer

Bhanu Bhardwaj 4 years, 9 months ago

the value of ( 1+ cot²2x)sin²2x is if x= 30⁰ मान ज्ञात करो
  • 1 answers

Yogita Ingle 4 years, 9 months ago

Steps of Construction 
Step 1: Draw a circle with O as center and radius 3.5 cm.
Step 2: Mark a point P outside the circle such that OP = 6.2 cm 
Step 3: Join OP. Draw the perpendicular bisector XY of OP, cutting OP at Q. 
Step 4: Draw a circle with Q as center and radius PQ (or OQ), to intersect the given circle at the points T and T’. 
Step 5: Join PT and PT’.

Here, PT and PT’ are the required tangents.Read more on Sarthaks.com -  

  • 2 answers

Paru ? 4 years, 9 months ago

Thank you!! ✌??

Yogita Ingle 4 years, 9 months ago

Let three consecutive positive integers be, n, n + 1 and n + 2. 

When a number is divided by 3, the remainder obtained is either 0 or 1 or 2.  

∴ n = 3p or 3p + 1 or 3p + 2, where p is some integer.

If n = 3p, then n is divisible by 3. 

If n = 3p + 1, ⇒ n + 2 = 3p + 1 + 2 = 3p + 3 = 3(p + 1) is divisible by 3. 

If n = 3p + 2, ⇒ n + 1 = 3p + 2 + 1 = 3p + 3 = 3(p + 1) is divisible by 3. 

So, we can say that one of the numbers among n, n + 1 and n + 2 is always divisible by 3.  

⇒ n (n + 1) (n + 2) is divisible by 3. 

Similarly, when a number is divided 2, the remainder obtained is 0 or 1. 

∴ n = 2q or 2q + 1, where q is some integer. 

If n = 2q ⇒ n and n + 2 = 2q + 2 = 2(q + 1) are divisible by 2. 

If n = 2q + 1 ⇒ n + 1 = 2q + 1 + 1 = 2q + 2 = 2 (q + 1) is divisible by 2. 

So, we can say that one of the numbers among n, n + 1 and n + 2 is always divisible by 2. 

⇒ n (n + 1) (n + 2) is divisible by 2. 

Hence n (n + 1) (n + 2) is divisible by 2 and 3.

∴ n (n + 1) (n + 2) is divisible by 6. 

  • 2 answers

Aman Kumar 4 years, 9 months ago

Circumference of ⭕= 2πr=2×22/7×56=352cm Circumference of ⭕=Perimeter of squre Perimeter of squre=4a=352 a=352/4=88 a=88cm Area of squre=a×a=88×88=7744sq.cm

Atuly Yadav 4 years, 9 months ago

Cricumfrence of circle =length of wire =2πr =2×22/7×56 =352cm Again its wire bent in the form of square Then , length of wire =perimeter of square =perimeter of square=352cm 4×side=352cm Side=88cm Therefore, Area of square=(side)² ============(88)² ============7744cm²
  • 1 answers

Kesava Shreyan 4 years, 9 months ago

9(cos2o+sin2o) 9(1) 9
  • 4 answers

Rimjhim Goyal 4 years, 9 months ago

In series or parallel combination.

Vivek Chandel 4 years, 9 months ago

In series or parallel

Vijaya Lakshmi Modium 4 years, 9 months ago

In parallel or serie combination?

Haripal Singh 4 years, 9 months ago

In series or parallel ?
  • 1 answers

Gaurav Seth 4 years, 9 months ago

Let AD be the lighthouse whose height is h metres. 13 and C are the position of two ships which are on opposite sides of lighthouse. The angles of depression of two ships B and C from the top of the lighthouse are α and β respectively.

i.e.,    ∠ABD = α and ∠ACD = β
Let    BD = x m and CD = y m
In right triangle ABD, we jave


In right triangle ACD, we have


Adding (i) and (ii), we get


Hence, the distance between the ship is  metres.
 

  • 1 answers

Yogita Ingle 4 years, 9 months ago

The point of observation is at A.

The height of the deck is 10 meters.

Thus, AB = CD = 10 meters

The top and bottom of a hill is E and C.

Therefore the angles of elevation and the depression are .

Let AD = BC = meters.

Consider the triangle ADE.

Thus,

;

Now consider the triangle ABC.

Substitute the value of x from equation (2) in equation (1), we have

Therefore 

h = 30 meters  .....(4)

The height of the hill is CE

That is,

Substitute the value of h from equation (4) in equation (5), we hve

Thus, the height of the hill is 40 meters and the distance of the hill from the ship is 

  • 1 answers

Gaurav Seth 4 years, 9 months ago

1.For that you have to use formula of volume of cone - 1/3 πr²h and you get the answer 19.64 or you can right it 20 cm²

 

2. For that you have to take volume of cone and volume of hemisphere [ 1/3 πr²h + 2/3πr³]

Step-by-step explanation:

1. volume of cone - 1/3πr²h

 

= 1/3 × 22/7 × 2.5² × 9

= (22× 6.25) ÷ 7

= 19.64 or 20cm³

 

2. volume of cone + volume of hemispherical end

= 1/3πr²h + 2/3πr³

= 1/3 × 22/7 × 2.5² × 9 + 2/3 × 22/7 × 2.5³

= 137.5/7 + 687.5/21

= (412.5 + 687.5) ÷ 21

= 1100 ÷ 21

= 52.3 cm³

  • 2 answers

Sourabh Tripathi 4 years, 9 months ago

Sin 30° - 1/2 Cos 30° - √3/2 Sin 60° - √3/2 Cos60° - 1/2 (1/2 + √3/2) - (√3/2 + 1/2) (√3 +1)/2 - (√ 3+1)/2 = 0

Gaurav Seth 4 years, 9 months ago

(sin30+cos30) - (sin60+cos60)

 

sin30 = 1/2

 

sin60= √3/2

 

cos30= √3/2

 

cos60= 1/2

 

=> (1/2+√3/2) - (√3/2+1/2)

 

=> 1+√3/2 - √3+1/2

 

=> 1+1+√3-√3 /2

 

=> 2/2

 

=>1

  • 3 answers

Rishabh Sahu??? 4 years, 9 months ago

Ff. Hidh ghgj the attitude of the following sheets and towels for class 5 class X The new time to explore your voice mail system expanded from class X social science Unit 2 chapter 1

Yash Bansal 4 years, 9 months ago

Length =22cm=l θ=60∘ 180∘=πrad 1∘=180π​rad 60∘=180π​×60rad=3π​rad Arc length =rθ r=θl​=(3π​)22​=(722​)22×3​ r=3×7 r=21cm

Alok Kumar 4 years, 9 months ago

A piece of wire 22 cm long is bent into the form of an arc of a circle subtending an angle of 60o at its centre. Find the radius of the circle.
  • 0 answers
  • 1 answers

Yogita Ingle 4 years, 9 months ago

 

AB is a chord of length 9.6 cm of a circle with centre O and radius 6 cm.

The tangents at A and B intersect at P.
CONSTRUCTION :  Join OP and OA. Let OP and AB intersect at M.
Let PA = x cm and PM = y cm.
Now, PA=PBPA=PB
and OP is the bisector of ∠APB∠APB   [∵∵  two tangents to a circle from an external point are equally inclined to the line segment joining the centre to that point.
Also, OP⊥ABOP⊥AB and OP bisects AB at M  [∵∵ OP is the right bisector of AB]
∴∴ AM = MB = 9.629.62cm
=4.8cm.=4.8cm.
In right △AMO△AMO, we have
OA=6cmOA=6cm
and AM=4.8cm.AM=4.8cm.
∴∴  OM = OA2−AM2−−−−−−−−−−√OA2−AM2
=62−4.82−−−−−−−√=62−4.82
=12.96−−−−√=12.96
=3.6cm=3.6cm.
In right △PAO△PAO, we have
AP2 = PM+ AM2
⇒x2=y2+(4.8)2⇒x2=y2+(4.8)2
⇒x2=y2+23.04⇒x2=y2+23.04...(i)
In right △PAO△PAO, we have
OP2 = PA2 + OA[Note ∠PAO=90∘∠PAO=90∘, since AO is the radius at the point of contact]
⇒(y+3.6)2⇒(y+3.6)2
=x2+62=x2+62
⇒y2+7.2y+12.96⇒y2+7.2y+12.96
=x2+36=x2+36
⇒7.2y=46.08⇒7.2y=46.08 [using (i)]
⇒y=6.4cm⇒y=6.4cm
and
x2 = (6.4)2 + 23.04
= 40.96 + 23.04 = 64
⇒x=64−−√=8⇒x=64=8
∴∴ PA=8cm.

  • 1 answers

Surya Bhai 4 years, 9 months ago

1
  • 1 answers

Ayushi Maurya 4 years, 9 months ago

(1-cos square theta)cosec square theta =(Sin square theta)cosec square theta =Sin square theta ×1/sin square theta=1
  • 2 answers

Gaurav Seth 4 years, 9 months ago

Example

Each numeral on a die is equally likely to occur when the die is tossed.

 

Sample space of throwing a die: { 1, 2, 3, 4, 5, 6 }

 

 

 

 

From this we can make conclusions such as the following:

  • Getting a 3 on the toss of a die and getting a 5 on the toss of a die are equally likely events, since the probabilities of each event are equal.
     
  • Getting an even number on the toss of a die and getting an odd number on the toss of a die are equally likely events, since the probabilities of each event are equal.
     
  • Getting a 1, 2 or 3 on the toss of a die and getting a 4, 5 or 6 on the toss of a die are equally likely events, since the probabilities of each event are equal.

Preeti 4 years, 9 months ago

The chances of both the events occuring is equal.
  • 1 answers

Yash Verma 4 years, 9 months ago

Let a and d be the first term and common difference of AP nth term of AP an​=a+(n−1)d ∴a3​=a+(3−1)d=a+2d a7​=a+(7−1)d=a+6d Given a3​+a7​=6 ∴(a+2d)+(a+6d)=6 ⇒2a+8d=6 ⇒a+4d=3....(1) Also given a3​×a7​=8 ∴(a+2d)(a+6d)=8 ⇒(3−4d+2d)(3−4d+6d)=8       [Using (1)] ⇒(3−2d)(3+2d)=8 ⇒9−4d2=8 ⇒4d2=1 ⇒d2=41​ ⇒d=±21​ When d=21​ a=3−4d=3−4×21​=3−2=1 When d=−21​ a=3−4d=3+4×21​=3+2=5 When a=1 & d=21​ S16​=216​[2×1+(16−1)×21​]=8(2+215​)=4×19=76 When a=5 & d=−21​ S16​=216​[2×5+(16−1)×(−21​)]=8(10−215​)=4×5=20 Thus the sum of first 16 term of the ap is 7 or 20
  • 1 answers

Gaurav Seth 4 years, 9 months ago

Step-by-step explanation:

We know that 

We are given that 

On comparing

Base = 7

Perpendicular = 8

To find hypotenuse we will use Pythagoras theorem

Now we are supposed to find 

Substitute the values

Hence 

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App