No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 4 answers

Vani Vashisht 4 years, 7 months ago

Aur kitna time Chahiye

Vani Vashisht 4 years, 7 months ago

No never

Naina Gupta 4 years, 7 months ago

Nhiiii jiiiii

Rana Name 4 years, 7 months ago

Noooo
  • 2 answers

Rashmi Ranjan 4 years, 7 months ago

(coseca.seca)

Rashmi Ranjan 4 years, 7 months ago

Take L. H. S change cot and tan into sin and cos Then take R. H. S change cot and tan into sin and cos Both side come (coseca.cota)(sina-cosa)
  • 2 answers

Aniket Agrawal 4 years, 7 months ago

α+β=3 αβ=5 1/α + 1/β = (β+α)/αβ = 3/5

Aniket Agrawal 4 years, 7 months ago

α+β= 3 αβ= 5 1 1 β+α 3 -- + -- = ------ = ---- . Ans α β αβ 5
  • 2 answers

Praveen Yadav 4 years, 5 months ago

hii

Sia ? 4 years, 7 months ago

Please ask question with complete information.

  • 2 answers

Sia ? 4 years, 7 months ago

2x2 + x − 6
Completing the square,
{tex}\Rightarrow{/tex} x2 + {tex}\frac x2{/tex} − 3 = 0
{tex}\Rightarrow{/tex} x2 + {tex}\frac x2{/tex} + {tex}\frac 1{16}{/tex} − {tex}\frac 1{16}{/tex} − 3 = 0
{tex}\Rightarrow{/tex} (x + {tex}\frac 14{/tex}​)2{tex}\frac {49}{16}{/tex} ​= 0
{tex}\Rightarrow{/tex} (x + {tex}\frac 14{/tex} − {tex}\frac 74{/tex}​)(x + {tex}\frac 14{/tex}​ + {tex}\frac 74{/tex}​) = 0
{tex}\Rightarrow{/tex} (x − {tex}\frac 32{/tex}​) (x + 2) = 0
{tex}\Rightarrow{/tex} x = {tex}\frac 32{/tex}, −2

Vaibhav Kúmár 4 years, 7 months ago

Completing the square method is not coming
  • 2 answers

Muskan Gulati 4 years, 7 months ago

Whole ncert chapter

Yug Kalpeshkumar Dabgar 4 years, 7 months ago

?plz
  • 1 answers

Yug Kalpeshkumar Dabgar 4 years, 7 months ago

I have written in a page How send photo in these app I don't know
  • 1 answers

Sia ? 4 years, 7 months ago

If a line is drawn parallel to one side of a triangle intersecting the other two sides in distinct points, then the other two sides are divided in the same ratio.

Construction
Join the vertex B of {tex}\triangle{/tex}ABC to Q and the vertex C to P to form the lines BQ and CP and then drop a perpendicular QN to the side AB and also draw PM{tex}\perp{/tex}AC as shown in the given figure.

Proof
Now the area of {tex}\triangle{/tex}APQ = {tex}\frac {1}{2}{/tex} {tex}\times{/tex} AP {tex}\times{/tex} QN (Since, area of a triangle = {tex}\frac {1}{2}{/tex} {tex}\times{/tex} Base {tex}\times{/tex} Height)
Similarly, area of {tex}\triangle{/tex}PBQ = {tex}\frac {1}{2}{/tex} {tex}\times{/tex} PB {tex}\times{/tex} QN
area of {tex}\triangle{/tex}APQ = {tex}\frac {1}{2}{/tex} {tex}\times{/tex} AQ {tex}\times{/tex} PM
Also, area of {tex}\triangle{/tex}QCP = {tex}\frac {1}{2}{/tex} {tex}\times{/tex} QC {tex}\times{/tex} PM ...(i)
Now, if we find the ratio of the area of triangles {tex}\triangle{/tex}APQand {tex}\triangle{/tex}PBQ, we have
{tex}\frac{\text { area of } \Delta A P Q}{\text { area of } \Delta P B Q}{/tex} = {tex}\frac{\frac{1}{2} \times A P \times Q N}{\frac{1}{2} \times P B \times Q N}=\frac{A P}{P B}{/tex}
Similarly, {tex}\frac{\text { area of } \Delta A P Q}{\text { area of } \Delta Q C P}{/tex} = {tex}\frac{\frac{1}{2} \times A Q \times P M}{\frac{1}{2} \times Q C \times P M}=\frac{A Q}{Q C}{/tex} ...(ii)
According to the property of triangles, the triangles drawn between the same parallel lines and on the same base have equal areas.
Therefore, we can say that {tex}\triangle{/tex}PBQ and {tex}\triangle{/tex}QCP have the same area.
area of {tex}\triangle{/tex}PBQ = area of {tex}\triangle{/tex}QCP ...(iii)
Therefore, from the equations (i), (ii) and (iii) we can say that,
{tex}\frac{{AP}}{{PB}} = \frac{{AQ}}{{QC}}{/tex}
Also, {tex}\triangle{/tex}ABC and {tex}\triangle{/tex}APQ fulfil the conditions for similar triangles, as stated above. Thus, we can say that {tex}\triangle{/tex}ABC {tex} \sim {/tex} {tex}\triangle{/tex}APQ.
The MidPoint theorem is a special case of the basic proportionality theorem.
According to mid-point theorem, a line drawn joining the midpoints of the two sides of a triangle is parallel to the third side.

  • 3 answers

Preet Bhullar 4 years, 7 months ago

45

Madhav Dixit 4 years, 7 months ago

45

Deepak Kumar 4 years, 7 months ago

HCF IS 45
  • 1 answers

Madhav Dixit 4 years, 7 months ago

sincos
  • 2 answers

Sharanjot Singh Bhandal 4 years, 7 months ago

Coefficient is 1

Palak Rajput 4 years, 7 months ago

Cofficient is 1
  • 2 answers

Prachi Worah 4 years, 7 months ago

-1700.88

Prachi Worah 4 years, 7 months ago

0.58
  • 1 answers

Tariq Lone 4 years, 7 months ago

Bolo
  • 2 answers

Harshu The Great 4 years, 7 months ago

The HCF of 867 and 225 is 3

Smeet Mehta 4 years, 7 months ago

Hi brother I hope I can help you with this Answer must be like https://drive.google.com/file/d/1lHqm1aKBl5is881bNt__sg5OJ3kPYn3X/view?usp=drivesdk Plz open the drive you will be getting the answer I hope you will get it..
  • 2 answers

Tariq Lone 4 years, 7 months ago

Given a12 =37 D=3 find a s12

Anshika Sharma 4 years, 7 months ago

1.5555....
  • 1 answers

Trishla Jain 4 years, 7 months ago

Cos30° = root 3/ 2 Cos60° = 1/2 Cos90° = 0
  • 2 answers

Prachi Worah 4 years, 7 months ago

2n-1

Ufjfjd Bbxhhd 4 years, 7 months ago

Dont know
  • 1 answers

Smeet Mehta 4 years, 7 months ago

Plz elaborate and tell which answer you want....
  • 2 answers

Thakur Netra 4 years, 7 months ago

Wrong answer

Incredible Foxtrot 4 years, 7 months ago

By similarity we get first side of square as 8/3 and the the area becomes 7.1 cm square
  • 5 answers

Thakur Netra 4 years, 7 months ago

K is not equal to 3

Ojas Gaint 4 years, 7 months ago

K=3

Likitha Chowdary 4 years, 7 months ago

K=3

Adithya Dev A 4 years, 7 months ago

K =/= 3. (a1/a2 =/= b1/b2)

Ashutosh Yadav 4 years, 7 months ago

K=3
  • 2 answers

Tushar Chaudhary 4 years, 7 months ago

5.74

Ashutosh Yadav 4 years, 7 months ago

Write full questions
  • 1 answers

Sia ? 4 years, 7 months ago

Logarithms are another way of thinking about exponents.
For example, we know that 2 raised to the 4th power equals 16. This is expressed by the exponential equation 24 = 16.

  • 3 answers

Arjun Keshari 4 years, 7 months ago

8

All In One 4 years, 7 months ago

Probability of green marble is 2/3. Probability of Blue marble = 1 - probability of green marble. = 1- 2/3 =1/3. No. Of Blue marble / total no. Of marble =1/3. 3 x no.of Blue marble = total no. Of marble. No.of Blue marble =24/3=8. So, no. Of marble is 8.

All In One 4 years, 7 months ago

No. Of Blue marble is 8
  • 1 answers

Shivam Kumar 4 years, 7 months ago

You can take the no 3 Then all no can be represented in the form 3q,3q+1,3q+2. Then you show by sqaring all of them one by one. For eg- (3q^2)=9q^2 or 9q(q) Where q is any integers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App