No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Anurag Mishra 7 years, 9 months ago

Hiiiiiii
  • 3 answers

Anurag Mishra 7 years, 9 months ago

18

Queen Titanium 7 years, 9 months ago

Use d=a2-a1= a3-a2 .

Anurag Mishra 7 years, 9 months ago

Hlo
  • 3 answers

Kaur Deep 7 years, 9 months ago

Hlo

Anurag Mishra 7 years, 9 months ago

Hlo*

Anurag Mishra 7 years, 9 months ago

Jlo
  • 2 answers

Love Punjabi 7 years, 9 months ago

Oh acha

Anurag Mishra 7 years, 9 months ago

Chat chalda
  • 9 answers

Complicated Life 7 years, 9 months ago

Hello

Anurag Mishra 7 years, 9 months ago

Hii

Complicated Life 7 years, 9 months ago

Aarushi ☺

Anurag Mishra 7 years, 9 months ago

Complicated life

Anurag Mishra 7 years, 9 months ago

What is your name ?

Complicated Life 7 years, 9 months ago

Nhi mai aapko nhi janti

Anurag Mishra 7 years, 9 months ago

R you don't know me

Anurag Mishra 7 years, 9 months ago

Hmm

Complicated Life 7 years, 9 months ago

???
  • 1 answers

Sia ? 6 years, 5 months ago


r = 15 cm, θ  = 60o
Area of the minor sector =  {tex}\frac\theta{360^\circ}\mathrm{πr}^2\;=\;\frac{\displaystyle60^\circ}{\displaystyle360^\circ}\times3.14\;\times15\times15{/tex} = 117.75 cm2
In {tex}\triangle{/tex}AOB, draw OM {tex}\perp{/tex} AB
In right triangle OMA and OMB,
OA = OB .........Radii of the same circle
OM = OM .........Common side
{tex}\therefore{/tex} {tex}\triangle{/tex}OMA {tex}\cong{/tex} {tex}\triangle{/tex}OMB .........RHS congruence criterion
{tex}\therefore{/tex} AM = BM .......CPCT
{tex}\Rightarrow{/tex} AM = BM = {tex}\frac 12{/tex}AB
{tex}\angle{/tex}AOM = {tex}\angle{/tex}BOM .......CPCT
{tex}\Rightarrow{/tex} {tex}\angle{/tex}AOM = {tex}\angle{/tex}BOM = {tex}\frac 12{/tex}{tex}\angle{/tex}AOB = {tex}\frac 12{/tex} {tex}\times{/tex} 60o = 30o
{tex}\therefore{/tex} In right triangle OMA, cos30o = {tex}\frac {OM}{OA}{/tex}
{tex}\Rightarrow{/tex} {tex}\frac{\sqrt3}2{/tex}= {tex}\frac {OM}{15}{/tex}
{tex}\Rightarrow{/tex} OM =  {tex}\frac{15\sqrt3}2{/tex}cm
sin30o  = {tex}\frac {AM}{OA}{/tex}
{tex}\Rightarrow{/tex} {tex}\frac 12{/tex}= {tex}\frac {AM}{15}{/tex}
{tex}\Rightarrow{/tex} AM =  {tex}\frac{15}2{/tex}cm
{tex}\Rightarrow{/tex} AB = 15 cm
{tex}\therefore{/tex} Area of {tex}\triangle{/tex}AOB = {tex}\frac 12{/tex} {tex}\times{/tex} AB {tex}\times{/tex} OM
= {tex}\frac 12{/tex} {tex}\times{/tex} 15 {tex}\times{/tex} {tex}\frac{15\sqrt3}2{/tex} = {tex}\frac{225\sqrt3}4{/tex}
= {tex}\frac {225 × 1.73}4{/tex} = 97.3125 cm2
{tex}\therefore{/tex} Area of the corresponding minor segment of the circle = Area of minor sector - Area of {tex}\triangle{/tex}AOB
= 117.75 - 97.3125 = 20.4375 cm2
and, area of the corresponding major segment of the circle = {tex}\pi{/tex}r2 - area of the corresponding minor segment of the circle
= 3.14 {tex}\times{/tex} 15 {tex}\times{/tex} 15 - 20.4375
= 706.5 - 20.4375 = 686.0625 cm2

  • 1 answers

Himangshu Maji 7 years, 9 months ago

Use the formula :Tn=a+(n-1)d Where, n=no. of terms, a=first term, d=common difference
  • 1 answers

Sia ? 6 years, 5 months ago

Let ABCD be a square and B (x, y) be the unknown vertex.
AB = BC
{tex} \Rightarrow {/tex}  AB2 = BC2 
 
{tex} \Rightarrow {/tex} (x + 1)2 + (y - 2)2 = (x - 3)2 + (y - 2)2
{tex} \Rightarrow {/tex} x2 + 1 + 2x + y2 + 4 - 4x = x2 - 6x + 9 + y2 + 4 - 4x
{tex} \Rightarrow {/tex} 2x + 1 = - 6x + 9
{tex} \Rightarrow {/tex} 8x = 8
{tex} \Rightarrow {/tex} x = 1 ........ (i)
In {tex}\triangle{/tex}ABC, AB2 + BC2 = AC2
{tex} \Rightarrow {/tex} (x + 1)2 + (y - 2)2 + (x - 3)2 + (y - 2)2 = (3 + 1)2 + (2 - 2)2
{tex} \Rightarrow {/tex}x2 + 1 + 2x + y2 - 4x + 4 + x2 +  9 - 6x + y2 + 4 - 2y = 16 + 0
{tex} \Rightarrow {/tex} 2x2 + 2y2 + 2x - 4y - 6x - 4y + 1 + 4 + 9 + 4 = 16
{tex} \Rightarrow {/tex} 2x2 + 2y2 - 4x - 8y + 2 = 0
{tex} \Rightarrow {/tex} x2 + y2 - 2x - 4y + 1 = 0 ..... (ii)
Putting the value of x in eq. (ii),
1 + y2 - 2 - 4y + 1 = 0 
{tex} \Rightarrow {/tex} y2 - 4y = 0 
{tex} \Rightarrow {/tex} y(y - 4) = 0
{tex} \Rightarrow {/tex} y = 0 or 4
Hence the other vertices are (1, 0) and (1, 4).

  • 6 answers

Himangshu Maji 7 years, 9 months ago

Hi friend I Himangshu Maji

Nancy Rajput 7 years, 9 months ago

Ok

Aditya Raj 7 years, 9 months ago

Na

Aditya Raj 7 years, 9 months ago

Are mai hoon h

Nancy Rajput 7 years, 9 months ago

Hii

Aditya Raj 7 years, 9 months ago

Hii
  • 1 answers

Sia ? 6 years, 4 months ago

The five highest cards in each suit (A- K - Q - J - 10) are called the honours or honour cards.

  • 7 answers

Miss Universe 7 years, 9 months ago

Kos cheez ka practice

Miss Universe 7 years, 9 months ago

Are u on?

Miss Universe 7 years, 9 months ago

Apna name btaoo

Miss Universe 7 years, 9 months ago

Btao

Aditya Raj 7 years, 9 months ago

Only pratice

Miss Universe 7 years, 9 months ago

Koi ho plz btao

Prateek Chawla 7 years, 9 months ago

Maii batau
  • 2 answers

Prateek Chawla 7 years, 9 months ago

Fogg chal rha hai

Vivek Singh 7 years, 9 months ago

Kya chal rha hai
  • 1 answers

Sia ? 6 years, 5 months ago

If any numbr ends with 0, then it must be divisible by 10 .Hence it should have 5 and 2 as a factors. Now the factorization of 8are:
{tex}\therefore 8 ^ { n } = ( 2 \times 2 \times 2 ) ^ { n } = 2 ^ { n } \times 2 ^ { n } \times 2 ^ { n }{/tex}
Hence 5 is not in the factors of 8n.
From the fundamental theorem of arithmetic, we know that the prime factorization of every composite number is unique.
So it is clear that 8n  is not divisible by 10.
{tex}\therefore{/tex} 8n can never end with 0.

  • 0 answers
  • 1 answers

Sven Clint 7 years, 9 months ago

3/4
  • 0 answers
  • 3 answers

Nivedita Singh 7 years, 9 months ago

1 - P ( red balls ) = 5/20 = 1/4 2- P ( not a white ball ) = 13/20 3- P ( neither a green nor red ball ) = 7/20

Yuvraj Singh 7 years, 9 months ago

1.)1/5. 2.)13/20. 3.)7/20

Mousami Gurung 7 years, 9 months ago

Hauhs! #(

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App