Ask questions which are clear, concise and easy to understand.
Ask QuestionPosted by Teerth Raj Chaudhary 7 years, 9 months ago
- 4 answers
Teerth Raj Chaudhary 7 years, 9 months ago
Posted by Ijjkgg Rgfddggjhh 7 years, 9 months ago
- 2 answers
Nyayir Riba 7 years, 9 months ago
Kavya Sharma 7 years, 9 months ago
Posted by Ijjkgg Rgfddggjhh 7 years, 9 months ago
- 1 answers
Kavya Sharma 7 years, 9 months ago
Posted by Gagandeep Arya 7 years, 9 months ago
- 1 answers
Posted by Subh Kumar 7 years, 9 months ago
- 3 answers
Darshanaa Yadav 7 years, 9 months ago
Posted by Tanisha Badlani 7 years, 9 months ago
- 8 answers
Tanisha Badlani 7 years, 9 months ago
Teerth Raj Chaudhary 7 years, 9 months ago
Posted by Mansi Gupta 7 years, 9 months ago
- 3 answers
Posted by Himanshu Dagar 6 years, 5 months ago
- 1 answers
Sia ? 6 years, 5 months ago
mam = nan
m[a + (m - 1)d] = n [a + (n - 1)d]
{tex} \Rightarrow {/tex} ma + m2d - md = na + n2d - nd
{tex} \Rightarrow {/tex} a(m - n) + (m2 - n2)d - md + nd = 0
{tex} \Rightarrow {/tex} a(m - n) + (m - n) (m + n)d - (m - n)d = 0
{tex} \Rightarrow {/tex} (m - n) [a + (m + n - 1)d] = 0
{tex} \Rightarrow {/tex} a + (m + n - 1)d = 0
{tex} \Rightarrow {/tex} am+n = 0
Hence proved.
Posted by Karan Sharma 7 years, 9 months ago
- 0 answers
Posted by Sachin Kumar 7 years, 9 months ago
- 1 answers
Posted by Vishesh Basoya 6 years, 5 months ago
- 1 answers
Sia ? 6 years, 5 months ago
Given quadratic equation is x2 - 2kx - 6 = 0
If x = 3 is one root of the equation,
then (3)2 - 2k(3) - 6 = 0
{tex}\therefore{/tex} 9 - 6k - 6 = 0
{tex}\Rightarrow{/tex}-6k = -3
{tex}\Rightarrow{/tex} k = {tex}\frac{1}{2}{/tex}
Posted by Sunny Rexwal 7 years, 9 months ago
- 1 answers
Posted by Ankit Jakhar 6 years, 5 months ago
- 1 answers
Sia ? 6 years, 5 months ago
Prime factorisation of 404 and 96 is:
404 = 2 {tex}\times{/tex} 2 {tex}\times{/tex} 101
404 = 22 {tex}\times{/tex} 101
96 = 2 {tex}\times{/tex} 2 {tex}\times{/tex} 2 {tex}\times{/tex} 2 {tex}\times{/tex} 2 {tex}\times{/tex} 3
96 = 25 {tex}\times{/tex} 3
{tex}\therefore{/tex} HCF(404,96 )= 22 = 4
LCM(404, 96 ) = 101 {tex}\times{/tex} 25 {tex}\times{/tex} 3
LCM( 404, 96) = 9696
now we have to verify that,
HCF(404, 96) {tex}\times{/tex}LCM(404, 96) = 404{tex}\times{/tex}96
Hence,
LHS = HCF {tex}\times{/tex} LCM
= 4 {tex}\times{/tex} 9696
= 38784
RHS= Product of numbers
=404 {tex}\times{/tex} 96 = 38784
Since, LHS=RHS
i.e. HCF {tex}\times{/tex} LCM = Product of 404 and 96.
hence verified
Posted by Harsh Sharma 7 years, 9 months ago
- 1 answers
Posted by Karan Arora 7 years, 9 months ago
- 1 answers
Posted by Harsh Sharma 7 years, 9 months ago
- 0 answers
Posted by Karan Sharma 7 years, 9 months ago
- 0 answers
Posted by Ankit Jakhar 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
Prime factorisation of 404 and 96 is:
404 = 2 {tex}\times{/tex} 2 {tex}\times{/tex} 101
404 = 22 {tex}\times{/tex} 101
96 = 2 {tex}\times{/tex} 2 {tex}\times{/tex} 2 {tex}\times{/tex} 2 {tex}\times{/tex} 2 {tex}\times{/tex} 3
96 = 25 {tex}\times{/tex} 3
{tex}\therefore{/tex} HCF(404,96 )= 22 = 4
LCM(404, 96 ) = 101 {tex}\times{/tex} 25 {tex}\times{/tex} 3
LCM( 404, 96) = 9696
now we have to verify that,
HCF(404, 96) {tex}\times{/tex}LCM(404, 96) = 404{tex}\times{/tex}96
Hence,
LHS = HCF {tex}\times{/tex} LCM
= 4 {tex}\times{/tex} 9696 = 38784
RHS= Product of numbers =404 {tex}\times{/tex} 96 = 38784
Since, LHS=RHS
i.e. HCF {tex}\times{/tex} LCM = Product of 404 and 96.
hence verified
Posted by Karan Sharma 7 years, 9 months ago
- 1 answers
Posted by Sujit Gore 7 years, 9 months ago
- 0 answers
Posted by Deepanshi Goyal 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
Total number of possible outcomes = 36
- Doublet are { (1, 1) (2, 2) (3, 3) (4, 4) (5, 5) (6, 6)}.
Total number of doublets = 6
{tex}\therefore{/tex} Prob (getting a doublet) = {tex}\frac{6}{36}{/tex}={tex}\frac{1}{6}{/tex} - Outcome whose sum of digits is 10 ={(4, 6) (5, 5) (6, 4)}.
Number of favorable outcomes =3
{tex}\therefore{/tex} Prob (getting a sum 10) = {tex}\frac{3}{36}{/tex} ={tex}\frac{1}{12}{/tex}
Posted by Kashi Telwani 7 years, 9 months ago
- 3 answers
Khushbu . 7 years, 9 months ago
Posted by Kanika Bareja 7 years, 9 months ago
- 6 answers
Teerth Raj Chaudhary 7 years, 9 months ago
Vidhan Mungad 7 years, 9 months ago
Posted by Sahil Singh 7 years, 9 months ago
- 0 answers
Posted by Ankit Jakhar 6 years, 6 months ago
- 1 answers
Sia ? 6 years, 6 months ago
Prime factorisation of 404 and 96 is:
404 = 2 {tex}\times{/tex} 2 {tex}\times{/tex} 101
404 = 22 {tex}\times{/tex} 101
96 = 2 {tex}\times{/tex} 2 {tex}\times{/tex} 2 {tex}\times{/tex} 2 {tex}\times{/tex} 2 {tex}\times{/tex} 3
96 = 25 {tex}\times{/tex} 3
{tex}\therefore{/tex} HCF(404,96 )= 22 = 4
LCM(404, 96 ) = 101 {tex}\times{/tex} 25 {tex}\times{/tex} 3
LCM( 404, 96) = 9696
now we have to verify that,
HCF(404, 96) {tex}\times{/tex}LCM(404, 96) = 404{tex}\times{/tex}96
Hence,
LHS = HCF {tex}\times{/tex} LCM
= 4 {tex}\times{/tex} 9696
= 38784
RHS= Product of numbers
=404 {tex}\times{/tex} 96 = 38784
Since, LHS=RHS
i.e. HCF {tex}\times{/tex} LCM = Product of 404 and 96.
hence verified
Posted by Ajeet Kumar 7 years, 9 months ago
- 2 answers
Tanish Duggal 7 years, 9 months ago
Posted by Sukhmanpreet Singh 7 years, 9 months ago
- 2 answers
P S 7 years, 9 months ago
Posted by Jeevan Kashyap 7 years, 9 months ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Nyayir Riba 7 years, 9 months ago
1Thank You