No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Nyayir Riba 7 years, 9 months ago

Sum of the total no.÷total no.
  • 4 answers

Lovely Aggarwal 7 years, 9 months ago

Don't know you tube pr check kiya lg nhi raha ki leak hue h paper

Tanish Duggal 7 years, 9 months ago

Yes Maine bhi suna hai ki you tube par papers lik hoye hai....

Cutiepie Pravleen 7 years, 9 months ago

its of 12 i think so

Gurman Singh 7 years, 9 months ago

Don't know
  • 3 answers

Vidhan Mungad 7 years, 9 months ago

Same 2 u n all the best guys .. ?? papr aache se krna .. bina tension ke ....

Tanish Duggal 7 years, 9 months ago

Same tu you ....????

Cutiepie Pravleen 7 years, 9 months ago

same 2 u
  • 1 answers

Jeevan Kashyap 7 years, 9 months ago

ax²+bx+c=0
  • 1 answers

Jasmeen Kaur 7 years, 9 months ago

Question 24 An AP consists of 37 terms. The sum of the three middle most terms is 225 and the sum of the last three terms is 429. Find the AP. Given Number of terms of AP = 37 So, last term will be 37th term Middle most term = ((37 + 1))/2 = 38/2 = 19th term Theory Let AP be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 Here number of terms = 11 Middle term = 6 So, Middle term = ((11 + 1))/2 = 12/2 = 6 So, 19th term is middle most term Thus, 3 middle most terms will be 18th term, 19th term, 20th term 18th term = a18 = a + (18 – 1)d = a + 17d 19th term = a19 = a + (19 – 1)d = a + 18d 20th term = a20 = a + (20 – 1)d = a + 19d Given Sum of 3 middle most terms = 225 (a + 17d) + (a + 18d) + (a + 19d) = 225 (a + a + a) + (17d + 18d + 19d) = 225 3a + 54d = 225 3(a + 18d) = 225 a + 18d = 225/3 a + 18d = 75 Also, Sum of last 3 terms = 429 Last term = an = a37 = a + (37 – 1)d = a + 36d Second Last term = an – 1 = a37 – 1 = a36 = a + (36 – 1)d = a + 35d Third Last term = an – 2 = a37 – 2 = a35 = a + (35 – 1)d = a + 34d Now Sum of last 3 terms = 429 Putting values (a + 36d) + (a + 35d) + (a + 34d) = 429 (a + a + a) + (36d + 35d + 34d) = 429 3a + 105d = 429 3(a + 35d) = 429 a + 35d = 429/3 a + 35d = 143 Thus, our equations are a + 18d = 7 5 …(1) a + 35d = 143 …(2) Doing (2) – (1) (a + 35d) – (a + 18d) = 143 – 75 a – a + 35d – 18d = 143 – 75 17d = 68 d = 68/17 d = 4 From (1) a + 18d = 7 5 Putting d = 4 a + 18 × 4 = 75 a + 72 = 75 a = 75 – 72 a = 3 Thus, a = 3, d = 4 So, AP is 3, 7, 11, 15, 19, …… 147
  • 3 answers

Gurman Singh 7 years, 9 months ago

Ops !it is 10the term and 10th term is-3

Sankalp Kumar 7 years, 9 months ago

10 th term

Gurman Singh 7 years, 9 months ago

-3
  • 0 answers
  • 1 answers

Teerth Raj Chaudhary 7 years, 9 months ago

Kiska
  • 3 answers

Teerth Raj Chaudhary 7 years, 9 months ago

Cos2(90 -23)-sin2 23 Sin2 23- sin2 23=0 Using identity cos(90-any angle)=sin any angle

Nyayir Riba 7 years, 9 months ago

It will be 0

Sakshi Sawant 7 years, 9 months ago

0
  • 3 answers

Tanisha Badlani 7 years, 9 months ago

Or tumhari

Tanisha Badlani 7 years, 9 months ago

Hmm meri toh almost ho gai h...

Teerth Raj Chaudhary 7 years, 9 months ago

Tumhari ho gai paper kaise gaye tumhare
  • 0 answers
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

By applying Euclid’s division lemma,
{tex}963 = 657\times  1 + 306.{/tex}
Since remainder ≠ 0, apply division lemma on divisor 657 and remainder 306
{tex}657 = 306\times  2 + 45.{/tex}
Since remainder ≠ 0, apply division lemma on divisor 306 and remainder 45
{tex}306 = 45\times  6 + 36.{/tex}
Since remainder ≠ 0, apply division lemma on divisor 45 and remainder 36
{tex}45 = 36\times  1 + 9.{/tex}
Since remainder ≠ 0, apply division lemma on divisor 36 and remainder 9
{tex}36 = 9 \times 4 + 0.{/tex}
Therefore, {tex}H.C.F. = 9.{/tex}

HCF of 2 numbers can be expressed as the linear combination of the numbers
{tex}\Rightarrow {/tex} 9 = 45 - 36 {tex}\times{/tex} 1
= {tex}45 - [306 - 45 \times 6] \times 1 = 45 - 306\times  1 + 45\times  6{/tex}
= {tex}45 \times 7 - 306\times  1 = [657 -306\times  2]\times  7 - 306 × 1{/tex}
= {tex}657 \times 7 - 306 \times 14 - 306 × 1{/tex}
= {tex}657\times  7 - 306\times  15{/tex}
= {tex}657\times  7 - [963 - 657 × 1] \times 15{/tex}
= 657 {tex}\times{/tex} 7 - 963 {tex}\times{/tex} 15 + 657 {tex}\times{/tex} 15
= 657 {tex}\times{/tex} 22 - 963 {tex}\times{/tex} 15.
Hence, obtained.

  • 1 answers

Charu Vatsal 7 years, 9 months ago

Thanks and same to you
  • 3 answers

Aisha Singh 7 years, 9 months ago

Then also I huge headake will be over

Sankalp Kumar 7 years, 9 months ago

But exam is tomorrow

Gaurav Kumar 7 years, 9 months ago

no one will be free it there would be pressure for results more than exams
  • 0 answers
  • 0 answers
  • 1 answers

Nikita Jain 7 years, 9 months ago

As a +6d=4 Nd d=4 Then, a+24=4 a=-20
  • 2 answers

Aisha Singh 7 years, 9 months ago

Same to you

Nikita Jain 7 years, 9 months ago

For*
  • 0 answers
  • 1 answers

Sankalp Kumar 7 years, 9 months ago

Curve shape of graph
  • 1 answers

Sia ? 6 years, 6 months ago

Given, AB and CD are two parallel tangents to a circle with centre O.

From the figure we get,

AB⊥ST then {tex}\angle{/tex}ASQ = 90° and

CD⊥TS then {tex}\angle{/tex}CTQ = 90°

{tex}\angle{/tex}ASO = {tex}\angle{/tex}QSO = {tex}90^\circ \over 2{/tex}= 45°

Similarly, {tex}\angle{/tex}OTQ = 45°

Consider ΔSOT,

{tex}\angle{/tex}OTS = 45° and {tex}\angle{/tex}OST = 45°

{tex}\angle{/tex}SOT + {tex}\angle{/tex}OTS + {tex}\angle{/tex}OST = 180°  (angle sum property)

{tex}\angle{/tex}SOT  = 180°  - ( {tex}\angle{/tex}OTS + {tex}\angle{/tex}OST) = 180°  - (45°  +45° )

= 180°  - 90°  = 90° 

{tex}\therefore{/tex} {tex}\angle{/tex}SOT = 90o

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App