No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 3 answers

Devduti Verma 4 years ago

Answer would be in negative -1.659

Saumya Pandey 4 years ago

1.659

Sk Rehan 4 years ago

Left from home and the meet and talk about the day and night and per the meet and talk about the meet only one technique is a joke with the day of any kind of any education and the day is not ?? and per capita income and I am
  • 3 answers
+,-1

Shreya Patel 4 years ago

O and 1 are the zeroes of the polynomial

Zeeshan Zeeshan 4 years ago

X2+26-25=0
  • 5 answers

Vandana Bharti 4 years ago

16?‍♀️

Naman Gupta 4 years ago

16???

Komal Kabdal 4 years ago

16

Himanshu Pandey 4 years ago

16 ?

Aditi Singhania 4 years ago

16 ??‍♀️
  • 2 answers

Sia ? 4 years ago

Please complete your question

Sia ? 4 years ago

Please complete your q

  • 1 answers

Sia ? 4 years ago

p(x) = x² - 3x + 2

=> x² - 2x - x + 2 = 0

=> x(x - 2)-1(x - 2) = 0

=> (x - 1)(x - 2) = 0

=> x - 1 = 0, x = 1 => a

=> x - 2 = 0, x = 2 => b

therefore two zeros a and b are 1 and 2

1/a + 1/b = 1/1 + 1/2

=> (2+1)/2

=> 3/2. Answer

  • 3 answers

Saumya Pandey 4 years ago

a=bq+r this is a formula

Aditi Singhania 4 years ago

But whatever the answer is that - An integer can be of the form 9q,9q+1,9q+2,9q+3,.........,or 9q+8

Aditi Singhania 4 years ago

Pragathi jii don't do the questions related to Euclid's division lemma because it is deleted from the topic in term 1 board examination it is not coming
  • 1 answers

Srishti Singh 4 years ago

Plzz ask full question
  • 4 answers
1

Aditi Singhania 4 years ago

Oh jii the answer is 1
That's sin*2A + cos*2A
1
  • 2 answers

Rakshit Singh 4 years ago

Book mei dekh le

Sumit Yadav 4 years ago

Polynomials Formulas ( x + y ) 2 = x 2 + y 2 + 2 x y ( x − y ) 2 = x 2 + y 2 − 2 x y ( x + y ) ( x − y ) = x 2 − y 2 ( x + y ) ( x + z ) = x 2 + x ( y + z ) + y z ( x + y ) ( x − z ) = x 2 + x ( y − z ) − y z x 2 + y 2 = ( x + y ) 2 − 2 x y ( x + y ) 3 = x 3 + y 3 + 3 x y ( x + y ) ( x − y ) 3 = x 3 − y 3 − 3 x y ( x − y ) ( x + y + z ) 2 = x 2 + y 2 + z 2 + 2 x y + 2 y z + 2 z x ( x − y − z ) 2 = x 2 + y 2 + z 2 − 2 x y + 2 y z − 2 z x x 3 + y 3 = ( x + y ) ( x 2 − x y + y 2 ) x 3 − y 3 = ( x − y ) ( x 2 + x y + y 2 ) x 4 − y 4 = ( x 2 ) 2 − ( y 2 ) 2 = ( x 2 + y 2 ) ( x 2 − y 2 ) = ( x 2 + y 2 ) ( x + y ) ( x − y ) ( x + y + z ) 2 = x 2 + y 2 + z 2 + 2 x y + 2 y z + 2 z x ( x + y − z ) 2 = x 2 + y 2 + z 2 + 2 x y − 2 y z − 2 z x ( x − y + z ) 2 = x 2 + y 2 + z 2 − 2 x y − 2 y z + 2 z x ( x − y − z ) 2 = x 2 + y 2 + z 2 − 2 x y + 2 y z − 2 z x x 3 + y 3 + z 3 − 3 x y z = [ ( x + y + z ) ( x 2 + y 2 + z 2 − x y − y z − z x ) ] 2. Arithmetic Progression Formulas nth Term of an Arithmetic Progression a n = a + ( n − 1 ) × d Sum of 1st n Terms of an Arithmetic Progression S n = n 2 [ 2 a + ( n − 1 ) d ] 3. Coordinate Geometry Formulas Distance Formula A B = √ ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 Section Formula ( m x 2 + n x 1 m + n , m y 2 + n y 1 m + n ) Mid-point Formula ( x 1 + x 2 2 , y 1 + y 2 2 ) Area of Triangle ar ( Δ A B C ) = 1 2 × ⎡ ⎢ ⎣ x 1 ( y 2 − y 3 ) + x 2 ( y 3 − y 1 ) + x 3 ( y 1 − y 2 ) ⎤ ⎥ ⎦ 4. Trigonometry Formulas Trigonometric Identities sin 2 A + cos 2 A = 1 tan 2 A + 1 = sec 2 A cot 2 A + 1 = c o s e c 2 A Relations between Trigonometric Identities tan A = sin A cos A cot A = cos A sin A c o s e c A = 1 sin A sec A = 1 cos A Trigonometric Ratios of Complementary Angles sin ( 90 ∘ − A ) = cos A cos ( 90 ∘ − A ) = sin A tan ( 90 ∘ − A ) = cot A cot ( 90 ∘ − A ) = tan A sec ( 90 ∘ − A ) = c o s e c A c o s e c ( 90 ∘ − A ) = sec A Values of Trigonometric Ratios of 0° and 90° ∠ A 0 ∘ 30 ∘ 45 ∘ 60 ∘ 90 ∘ sin A 0 1 2 1 √ 2 √ 3 2 1 cos A 1 √ 3 2 1 √ 2 1 2 0 tan A 0 1 √ 3 1 √ 3 Not Defined sec A 1 2 √ 3 √ 2 2 Not Defined cosec A Not Defined 2 √ 2 2 √ 3 1 cot A Not Defined √ 3 1 1 √ 3 0 5. Circles Formulas Area of circle π r 2 Diameter of circle 2 r Circumference of circle 2 π r Sector angle of circle θ = ( 180 × l ) ( π r ) Area of the sector = ( θ 2 ) × r 2 Area of the circular ring = π × ( R 2 − r 2 ) θ = Angle between two radii R = Radius of outer circle r = Radius of inner circle 6. Statistics Formulas Mean a m = a 1 + a 2 + a 3 + a 4 4 = n ∑ 0 a n Median M e d i a n = l + ( n 2 − c f f ) h Mode M o = l + ( f 1 − f 0 2 f 1 − f 0 − f 2 ) h 7. Quadratic Equations Formulas Quadratic Equations a x 2 + b x + c = 0 where a ≠ 0 Quadratic Polynomial P ( x ) = a x 2 + b x + c where a ≠ 0 Zeroes of the Polynomial P ( x ) The Roots of the Quadratic Equations are zeroes One Real Root b 2 − 4 a c = 0 Two Distinct Real Roots b 2 − 4 a c > 0 No Real Roots b 2 − 4 a c < 0 8. Triangles Formulas Six elements of triangle Three sides and three angles Angle sum property of triangle Sum of three angles: ∠ A + ∠ B + ∠ C = 180 ∘ Right angled triangle Adjacent Side Opposite Side Hypotenuse Pythagoras Theorem H 2 = A S 2 + O S 2 H = Hypotenuse A S = Adjacent Side O S = Opposite Side Equilateral Triangles All sides are equal Isosceles Triangle Two sides are equal Congruent Triangles Their corresponding parts are equal SSS Congruence of two triangles Three corresponding sides are equal SAS Congruence of two triangles Two corresponding sides and an angle are equal ASA Congruence of two triangles Two corresponding angles and a side are equal 9. Surface Area and Volume Formulas Cuboid Volume of Cuboid (LSA) l × b × h Lateral Surface Area of Cuboid (LSA) 2 h ( l + b ) Total Surface Area of Cuboid (TSA) 2 ( l b + b h + h l ) Cube Volume of Cube x 3 Lateral Surface Area of Cube (LSA) 4 x 2 Total Surface Area of Cube (TSA) 6 x 2 Sphere Volume of Sphere 4 3 × π r 3 Lateral Surface Area of Sphere (LSA) 4 π r 2 Total Surface Area of Sphere (TSA) 4 π r 2 Right Circular Cylinder Volume of Right Circular Cylinder π r 2 h Lateral Surface Area of Right Circular Cylinder (LSA) 2 × ( π r h ) Total Surface Area of Right Circular Cylinder (TSA) 2 π r × ( r + h ) Right Pyramid Volume of Right Pyramid 1 3 × [ Area of the Base ] × h Lateral Surface Area of Right Pyramid (LSA) 1 2 × p × L Total Surface Area of Right Pyramid (TSA) LSA + [ Area of the Base ] Right Circular Cone Volume of Right Circular Cone 1 3 × ( π r 2 h ) Lateral Surface Area of Right Circular Cone (LSA) π r l Total Surface Area of Right Circular Cone (TSA) π r × ( r + L ) Hemisphere Volume of Hemisphere 2 3 × ( π r 3 ) Lateral Surface Area of Hemisphere (LSA) 2 π r 2 Total Surface Area of Hemisphere (TSA) 3 π r 2 Prism Volume of Prism B × h Lateral Surface Area of Prism (LSA) p × h Total Surface Area of Prism (TSA) π × r × ( r + L ) l = Length, h = Height, b = Breadth r = Radius of Sphere L = Slant Height 
  • 2 answers

Tanya Singh 4 years ago

90° or 180°

Ashmit Patel 4 years ago

Pta nhi
  • 1 answers

Sumit Yadav 4 years ago

Let r be the radius of the circle and θ be the angle. Now, Perimeter of the sector=(2r+2πrθ360) =2r+2×227×r×90360=(2r+11r7)=25r7 Also, 25r7=25⇒r=(25×725)⇒r=7 cm Area of the minor segment=(πr2θ360−12r)2sin θ cm2 =∣∣(227×7×7×90360)−(12×7×7×sin 90°)∣∣ cm2=(772−492) cm2=282 cm2=14 cm2
  • 1 answers

Preeti Dabral 4 years ago

Please complete your question

  • 2 answers

Preeti Dabral 4 years ago

ax+by=a-b
ax=a-b-by
x=a-b-by/a←

bx-ay=a+b
substituting
b(a-b-by/a)-ay=a+b
ab-b²-b²y/a-ay=a+b
ab-b²-b²y-a²y/a=a+b
ab-b²-(b²+a²)y=a²+ab
-(b²+a²)y=a²+ab-ab+b²
(b²+a²)y=-(a²+b²)
y=-(a²+b²)/a²+b²
y=-1←

substituting value of y
x=a-b-b(-1)/a
x=a-b+b/a
x=a/a
x=1

Bhawna Yadav 4 years ago

ax+by=a-b ax=a-b-by x=a-b-by/a← bx-ay=a+b substituting b(a-b-by/a)-ay=a+b ab-b²-b²y/a-ay=a+b ab-b²-b²y-a²y/a=a+b ab-b²-(b²+a²)y=a²+ab -(b²+a²)y=a²+ab-ab+b² (b²+a²)y=-(a²+b²) y=-(a²+b²)/a²+b² y=-1← substituting value of y x=a-b-b(-1)/a x=a-b+b/a x=a/a x=1
  • 1 answers

Priya Soni 4 years ago

Given that: In ∆ABC, angle b=90° And tan A =4/4=P/B. Find: Cos C=? By using Pythagoras theorem. AC²=AB²+BC² AC²=(4)²+(4)² AC²=16+16 AC²=32 AC²=√32 AC²=⁴√2. Now we find the value of Cos C= B/H= 4/⁴√2= 1/√2. Done??
  • 1 answers

Agrim Tripathi 4 years ago

sec A/cosec A=sin A/cos A=tan A=15/8 In a right triangle, a=15x, b=8x thus hypotenuse is c=17x thus cos A=8/17...17.cos A=8....thus, x=8
  • 1 answers

Sumit Yadav 4 years ago

In, ΔABC BC || DE In ΔABC and ΔADE ∠ABC = ∠ADE [corresponding angles] ∠ACB = ∠AED [ corresponding angles] ∠A = ∠A common ⇒ ΔABC ~ ΔADE AD/DB = AE/EC 1.5/3 = 1/EC EC = 3 × 1/1.5 EC = 2 cm (ii) In ΔABC and ΔADE ∠ABC = ∠ADE [corresponding angles] ∠ACB = ∠AED [ corresponding angles] ∠A = ∠A common ΔABC ∼ ΔADE AD/DB = AE/EC AD/7.2 = 1.8/5.4 AD = (7.2 × 1.8)/5.4 AD = 2.4 cm

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App