No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 1 answers

Manan Khandelwal 7 years, 8 months ago

2 + 2 = 5 14 = 14 10 + 4 = 10 + 4 4 - 4 = 10 - 10 2^2 - 2^- 2 = 5 ( 2 - 2 ) Then we apply identity ( 2 + 2 ) ( 2 - 2) = 5 ( 2 - 2) Then we will cancel 2 - 2 by 2 - 2 Then it will be 2 + 2 = 5 # proved#
  • 0 answers
  • 0 answers
  • 1 answers

Anjali Tanwar 7 years, 8 months ago

Which come in others table
  • 2 answers

Ankit Shukla 7 years, 8 months ago

Euclid division lemma method is based on formula of Dividend = Divisor × Quotient + Remainder It is similar method to division method but in this only we use a formula given above . And finally last Divisor is our hcf .

Akshay Kumar 7 years, 8 months ago

The basis of euclidean division alogorithm is eculids divison lema. To calculate the HCF of two positive integer we use eculids division algorithm. HCF is largest no which exactly divides two or more positive integer
  • 0 answers
  • 0 answers
  • 2 answers

Saurav Kumar 7 years, 8 months ago

A number which is neither terminates nor repeat or which is not a perfect square

Charu Bansal 7 years, 8 months ago

Numbers that cannot be expressed in the form of p/q
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

If possible, let {tex}\sqrt { 6 }{/tex} be rational and let its simplest form be {tex}\frac { a } { b }{/tex} then, a and b are integers having no common factor other than 1, and {tex}b \neq 0{/tex}.
Now, {tex}\sqrt { 6 } = \frac { a } { b } {/tex}
{tex}\Rightarrow 6 = \frac { a ^ { 2 } } { b ^ { 2 } }{/tex} [on squaring both sides]
{tex}\Rightarrow 6b^2 = a^2{/tex} .................(i)
{tex}\Rightarrow{/tex} 6 divides {tex}a^2{/tex} [{tex}\because{/tex} 6 divides {tex}6b^2{/tex}]
{tex}\Rightarrow{/tex} 6 divides {tex}a{/tex}
Let {tex}a = 6c{/tex} for some integer {tex}c{/tex}
putting {tex} a = 6c{/tex} in (i), we get
{tex}a^2 = 36c^2{/tex}
{tex}6b^2 = 36c^2 \;\;\;[6b^2 = a^2] {/tex}
{tex}\Rightarrow b^2 = 6c^2{/tex}
{tex}\Rightarrow{/tex} 6 divides {tex}b^2{/tex} [{tex}\because{/tex} 6 divides {tex}6c^2{/tex}]
{tex}\Rightarrow{/tex} 6 divides {tex}b{/tex} [{tex}\because{/tex} 6 divides {tex}b^2 = 6{/tex} divides {tex}b{/tex}]
Thus, 6 is a common factors of {tex}a{/tex} and {tex}b{/tex}
But, this contradicts the fact that {tex}a{/tex} and {tex}b{/tex} have no common factor other than 1
The contradiction arises by assuming that {tex}\sqrt { 6 }{/tex} is rational.
Hence {tex}\sqrt { 6 }{/tex} is irrational.

  • 1 answers

Sia ? 6 years, 5 months ago

Given: {tex}\Delta ABC \sim \Delta PQR{/tex}
Since we know that ,the ratio of area of two similar triangles is equal to the square of ratio of their corresponding sides. Thus,
{tex}\frac{\text { ar } \triangle \mathrm{ABC}}{\text { ar } \triangle \mathrm{PQR}}{/tex} = {tex}\frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}}{/tex} = {tex}\left(\frac{1}{3}\right)^{2}{/tex} = {tex}\frac{1}{9}{/tex}

  • 1 answers

Sia ? 6 years, 5 months ago

Let take that 6 + √2 is a rational number.
So we can write this number as
6 + √2 = a/b
Here a and b are two co-prime number and b is not equal to 0
Subtract 6 both side we get
√2 = a/b – 6
√2 = (a-6b)/b
Here a and b are an integer so (a-6b)/b is a rational number so √2 should be a rational number But √2 is an irrational number so it is contradicting
Hence result is 6 + √2 is a irrational number

  • 2 answers

Ash Ketchup 7 years, 8 months ago

Pavan partu is wrong The answer is a number which is stop is called terminating A number which is not stop is called non terminating number

Pavan Parthu 7 years, 8 months ago

the numbers which r not repeating called terminating the num which r repeating called non terminating
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

If a and b are odd numbers then it should be in 2q+1 or 2q+3 form where q is a positive integer.
Let a = 2q + 3 , b = 2q + 1  and a > b
Now, {tex}\frac{a + b } {2} = \frac{ 2q + 3 + 2q + 1}{2}{/tex}
{tex}= \frac { 4 q + 4 } { 2 }{/tex}
= 2q + 2
{tex}\frac{a+b}{2}{/tex}=2(q+1) = an even number..........(1)
Now,
{tex}\frac { a - b } { 2 } = \frac { ( 2 q + 3 ) - ( 2 q + 1 ) } { 2 }{/tex}
{tex}= \frac { 2 q + 3 - 2 q - 1 } { 2 }{/tex}
{tex}\frac{a-b}{2}= \frac { 2 } { 2 }{/tex} = 1 = an odd number..........(2)
Hence From (1) and (2) {tex}\frac{a+b}{2}{/tex}   and {tex}\frac{a-b}{2}{/tex}   are even and odd numbers respectively

  • 0 answers
  • 2 answers

Pavan Parthu 7 years, 8 months ago

real number

Srestha Mitra 7 years, 8 months ago

Irrational
  • 1 answers

Pavan Parthu 7 years, 8 months ago

he drink all oil
  • 1 answers

Sia ? 6 years, 6 months ago

In {tex}\triangle P Q R{/tex}
{tex}\because \angle Q = 90 ^ { \circ }{/tex}
{tex}\therefore P R ^ { 2 } = P Q ^ { 2 } + Q R ^ { 2 }{/tex} By Pythagoras theorem
{tex}\Rightarrow ( 25 - \mathrm { QR } ) ^ { 2 } = ( 5 ) ^ { 2 } + \mathrm { QR } ^ { 2 }{/tex} {tex}\therefore \mathrm { PR } + \mathrm { QR } = 25 ( \mathrm { given } ){/tex}
{tex}\Rightarrow 625 + \mathrm { QR } ^ { 2 } - 50 \mathrm { QR } = 25 + \mathrm { QR } ^ { 2 }{/tex}
{tex}\Rightarrow 50 \mathrm { QR } = 600 \Rightarrow \mathrm { QR } = \frac { 600 } { 50 } = 12 \mathrm { cm }{/tex}

Now, {tex}\mathrm { PR } + \mathrm { QR } = 25 \Rightarrow \mathrm { PR } + 12 = 25{/tex}
{tex}\Rightarrow \mathrm { PR } = 25 - 12 \Rightarrow \mathrm { Pr } = 13 \mathrm { cm }{/tex}
So, {tex}\sin \mathrm { P } = \frac { \mathrm { QR } } { \mathrm { PR } } = \frac { 12 } { 13 }{/tex}
{tex}\cos P = \frac { P Q } { P R } = \frac { 5 } { 13 }{/tex}
and {tex}\tan P = \frac { Q R } { P Q } = \frac { 12 } { 5 }{/tex}

  • 1 answers

Sia ? 6 years, 6 months ago

In {tex}\triangle P Q R{/tex}
{tex}\because \angle Q = 90 ^ { \circ }{/tex}
{tex}\therefore P R ^ { 2 } = P Q ^ { 2 } + Q R ^ { 2 }{/tex} By Pythagoras theorem
{tex}\Rightarrow ( 25 - \mathrm { QR } ) ^ { 2 } = ( 5 ) ^ { 2 } + \mathrm { QR } ^ { 2 }{/tex} {tex}\therefore \mathrm { PR } + \mathrm { QR } = 25 ( \mathrm { given } ){/tex}
{tex}\Rightarrow 625 + \mathrm { QR } ^ { 2 } - 50 \mathrm { QR } = 25 + \mathrm { QR } ^ { 2 }{/tex}
{tex}\Rightarrow 50 \mathrm { QR } = 600 \Rightarrow \mathrm { QR } = \frac { 600 } { 50 } = 12 \mathrm { cm }{/tex}

Now, {tex}\mathrm { PR } + \mathrm { QR } = 25 \Rightarrow \mathrm { PR } + 12 = 25{/tex}
{tex}\Rightarrow \mathrm { PR } = 25 - 12 \Rightarrow \mathrm { Pr } = 13 \mathrm { cm }{/tex}
So, {tex}\sin \mathrm { P } = \frac { \mathrm { QR } } { \mathrm { PR } } = \frac { 12 } { 13 }{/tex}
{tex}\cos P = \frac { P Q } { P R } = \frac { 5 } { 13 }{/tex}
and {tex}\tan P = \frac { Q R } { P Q } = \frac { 12 } { 5 }{/tex}

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App