No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 6 years, 5 months ago

Given: l and m are the tangent to a circle such that l || m, intersecting at A and B respectively.
To prove: AB is a diameter of the circle.
Proof:
A tangent at any point of a circle is perpendicular to the radius through the point of contact.
{tex}\therefore{/tex} {tex}\angle X A O = 90 ^ { \circ }{/tex}
and {tex}\angle Y B O = 90 ^ { \circ }{/tex}
Since {tex}\angle X A O + \angle Y B O = 180 ^ { \circ }{/tex} 
An angle on the same side of the transversal is 180°.
Hence the line AB passes through the centre and is the diameter of the circle.

  • 1 answers

Sia ? 6 years, 5 months ago

We have to  find the greatest number that divides 445, 572 and 699 and leaves remainders of 4, 5 and 6 respectively. This means when the number divides 445, 572 and 699 leaves remainders 4, 5 and 6 is that
445 - 4 = 441, 572 - 5 = 567 and 699 - 6 = 693 are completely divisible by the  required number.For the highest number which divides the above numbers can be calculated by HCF .
Therefore, the required number  is the  H.C.F. of 441, 567 and 693 Respectively.
First, consider 441 and 567.
By applying Euclid’s division lemma, we get
567 = 441 {tex}\times{/tex} 1 + 126
441 = 126 {tex}\times{/tex} 3 + 63
126 = 63 {tex}\times{/tex} 2 + 0.
Therefore, H.C.F. of 441 and 567 = 63
Now, consider 63 and 693
again we have to  apply Euclid’s division lemma, we get
693 = 63 {tex}\times{/tex} 11 + 0.
Therefore, H.C.F. of 441, 567 and 693  is  63
Hence, the required number is 63. 63 is the highest number which divides 445,572 and 699 will leave 4,5 and 6 as remainder respectively.

  • 1 answers

Sachin Yadav 7 years, 8 months ago

4/x+3y=14 3/x-4y=2
  • 0 answers
Rat
  • 0 answers
  • 0 answers
  • 0 answers
  • 0 answers
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

We have,
{tex}8 x ^ { 2 } - 22 x - 21 = 0{/tex}
{tex}\Rightarrow{/tex} 8x2 - 28x + 6x - 21 = 0
{tex}\Rightarrow{/tex} 4x(2x - 7) + 3 (2x - 7) = 0
{tex}\Rightarrow{/tex} (2x - 7) (4x + 3) = 0 {tex}\Rightarrow{/tex} 2x - 7 = 0 or, 4x + 3 = 0 {tex}\Rightarrow{/tex} {tex}x = \frac { 7 } { 2 } \text { or } x = - \frac { 3 } { 4 }{/tex}
Thus, {tex}x = \frac { 7 } { 2 } \text { and } x = - \frac { 3 } { 4 }{/tex} are two roots of the equation 8x2 - 22x - 21 = 0

  • 1 answers

Sia ? 6 years, 6 months ago

Let three consecutive numbers be x, (x + 1) and (x + 2)
Let x = 6q + r 0 {tex}\leq r < 6{/tex}
{tex}\therefore x = 6 q , 6 q + 1,6 q + 2,6 q + 3,6 q + 4,6 q + 5{/tex}
{tex}\text { product of } x ( x + 1 ) ( x + 2 ) = 6 q ( 6 q + 1 ) ( 6 q + 2 ){/tex}
if x = 6q then which is divisible by 6
{tex}\text { if } x = 6 q + 1{/tex}
{tex}= ( 6 q + 1 ) ( 6 q + 2 ) ( 6 q + 3 ){/tex}
{tex}= 2 ( 3 q + 1 ) .3 ( 2 q + 1 ) ( 6 q + 1 ){/tex}
{tex}= 6 ( 3 q + 1 ) \cdot ( 2 q + 1 ) ( 6 q + 1 ){/tex}
which is divisible by 6
if x = 6q + 2
{tex}= ( 6 q + 2 ) ( 6 q + 3 ) ( 6 q + 4 ){/tex}
{tex}= 3 ( 2 q + 1 ) .2 ( 3 q + 1 ) ( 6 q + 4 ){/tex}
{tex}= 6 ( 2 q + 1 ) \cdot ( 3 q + 1 ) ( 6 q + 1 ){/tex}
Which is divisible by 6
{tex}\text { if } x = 6 q + 3{/tex}
{tex}= ( 6 q + 3 ) ( 6 q + 4 ) ( 6 q + 5 ){/tex}
{tex}= 6 ( 2 q + 1 ) ( 3 q + 2 ) ( 6 q + 5 ){/tex}
which is divisible by 6
{tex}\text { if } x = 6 q + 4{/tex}
{tex}= ( 6 q + 4 ) ( 6 q + 5 ) ( 6 q + 6 ){/tex}
{tex}= 6 ( 6 q + 4 ) ( 6 q + 5 ) ( q + 1 ){/tex}
which is divisible by 6
if x = 6q + 5
{tex}= ( 6 q + 5 ) ( 6 q + 6 ) ( 6 q + 7 ){/tex}
{tex}= 6 ( 6 q + 5 ) ( q + 1 ) ( 6 q + 7 ){/tex}
which is divisible by 6
{tex}\therefore {/tex} the product of any three natural numbers is divisible by 6.

  • 0 answers
  • 1 answers

Khushi Jain 7 years, 8 months ago

Yes it's possible
  • 2 answers

Beauty Queen? Miss Sweetu? 7 years, 8 months ago

Combination of whole number as well as negative numbers ..

Naina Sharma 7 years, 8 months ago

It is a whole number that can be positive,negative or zero.
1.4
  • 0 answers
  • 0 answers
  • 1 answers

Sia ? 6 years, 5 months ago

Check question papers here : https://mycbseguide.com/cbse-question-papers.html

  • 1 answers

Sia ? 6 years, 6 months ago

Let the common ratio term of income be x and expenditure be y.
So, the income of first person is Rs.9x and the income of second person is Rs.7x.
And  the expenditures of first and second person is 4y and 3y respectively.
Then, Saving of first person =9x - 4y
and  saving of second person = 7x - 3y
As per given condition
 9x - 4y = 200
 {tex}\Rightarrow{/tex} 9x - 4y - 200=0    ... (i)
and, 7x - 3y = 200 
{tex}\Rightarrow{/tex} 7x - 3y - 200 =0   ..... (ii)
Solving equation (i) and (ii) by cross-multiplication, we have 
{tex}\frac { x } { 800 - 600 } = \frac { - y } { - 1800 + 1400 } = \frac { 1 } { - 27 + 28 }{/tex}
{tex}\frac { x } { 200 } = \frac { - y } { - 400 } = \frac { 1 } { 1 }{/tex}
{tex}\Rightarrow{/tex} x =200 and y =400
So, the solution of equations is x = 200 and y = 400.
Thus, monthly income of first person = Rs.9x = Rs.(9 {tex}\times{/tex} 200)= Rs.1800
and, monthly income of second person = Rs.7x = Rs.(7{tex}\times{/tex} 200)= Rs. 1400

  • 0 answers
  • 1 answers

Sia ? 6 years, 5 months ago

According to the question,
{tex}(x - 5)(x - 6) = \frac{{25}}{{{{\left( {24} \right)}^2}}}{/tex}
{tex}\Rightarrow x(x - 6) - 5(x - 6) = \frac{{25}}{{{{(24)}^2}}}{/tex}
{tex}\Rightarrow {x^2} - 6x - 5x + 30 - \frac{{25}}{{{{(24)}^2}}} = 0{/tex}
{tex}\Rightarrow {x^2} - 11x + 30 - \frac{{25}}{{{{(24)}^2}}} = 0{/tex}
{tex}\Rightarrow {x^2} - 11x + \frac{{30 \times {{24}^2} - 25}}{{{{(24)}^2}}} = 0{/tex}
{tex} \Rightarrow {x^2} - 11x + \frac{{30 \times 576 - 25}}{{{{(24)}^2}}} = 0{/tex}
{tex} \Rightarrow {x^2} - 11x + \frac{{17280 - 25}}{{{{(24)}^2}}} = 0{/tex}
{tex}\Rightarrow {x^2} - \frac{{264x}}{{24}} + \frac{{145}}{{24}} \times \frac{{119}}{{24}} = 0{/tex}
{tex}\Rightarrow {x^2} - \left( {\frac{{145}}{{24}} + \frac{{119}}{{24}}} \right)x + \frac{{145}}{{24}} \times \frac{{119}}{{24}} = 0{/tex}
{tex}\Rightarrow {x^2} - \frac{{145}}{{24}}x - \frac{{119}}{{24}}x + \frac{{145}}{{24}} \times \frac{{119}}{{24}} = 0{/tex}
{tex}\Rightarrow x\left( {x - \frac{{145}}{{24}}} \right) - \frac{{119}}{{24}}\left( {x - \frac{{145}}{{24}}} \right) = 0{/tex}
{tex}\Rightarrow \left( {x - \frac{{145}}{{24}}} \right)\left( {x - \frac{{119}}{{24}}} \right) = 0{/tex}
{tex}\Rightarrow x - \frac{{145}}{{24}} = 0{/tex} or {tex}x - \frac{{119}}{{24}} = 0{/tex}
{tex}\Rightarrow x = \frac{{145}}{{24}}{/tex} or {tex}x = \frac{{119}}{{24}}{/tex}

  • 2 answers

Subham Kumar 7 years, 8 months ago

Sorry...√3and -√3. Are two irrational no. Which sum is rational no.

Subham Kumar 7 years, 8 months ago

2root3 - root3
  • 1 answers

Sia ? 6 years, 6 months ago

Let α=5

Given α+β=0

5+β=0,β=-5

So the polynomial f(x)=(x-5)[x-(-5)]

=(x-5)(x+5)

=x2-25

  • 1 answers

Sia ? 6 years, 6 months ago

Let a be the first term and d be the common difference of the given A.P.
Then, 8th term = a8 = a + 7d
and 2nd term = a2 = a + d
According to given information,
{tex}a _ { 8 } = \frac { a _ { 2 } } { 2 }{/tex}
{tex}\Rightarrow{/tex} 2a8 = a2
{tex}\Rightarrow{/tex} 2(a + 7d) = a + d
{tex}\Rightarrow{/tex} a + 13d = 0...(i)
Now, 11th term = a11 = a + 10d and 4th term = a4 = a + 3d
According to the given information,
{tex}a _ { 11 } - \frac { a _ { 4 } } { 3 } = 1{/tex}
{tex}\Rightarrow{/tex} 3a11 - a4 = 3
{tex}\Rightarrow{/tex} 3(a + 10d) - (a + 3d) = 3
{tex}\Rightarrow{/tex} 3a + 30d - a - 3d = 3
{tex}\Rightarrow{/tex} 2a + 27d = 3...(ii)
Multiplying equation (i) by 2, we get
2a + 26d = 0...(iii)
Subtracting (iii) from (ii), we get
d = 3
{tex}\Rightarrow{/tex} a + 13(3) = 0
{tex}\Rightarrow{/tex} a = -39
Now, 15th term = a​​​​​​15 = a + 14d = -39 + 14(3) = -39 + 42 = 3

Hence, 15th term is 3 .

  • 0 answers
  • 1 answers

Manan Khandelwal 7 years, 8 months ago

M = l + (n upon 2 - cf) upon f × h

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App