No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sonu Kumar 7 years, 7 months ago

Locate the points are 1st ,1st, 1st, 1st, 3rd, 4th, 1st cartedian plane
  • 1 answers

Anya Sharma 7 years, 7 months ago

Plzz give me one ques then I tell u
  • 1 answers

Pankaj Chauhan 7 years, 7 months ago

Write your ques.
  • 2 answers

Tarun Rana 7 years, 7 months ago

Yes ,it is

Vìréñdrâ Kúmàr. 7 years, 7 months ago

It is proof by contradiction method
  • 1 answers

Abhilasha Rajput 7 years, 7 months ago

1,2,73
  • 1 answers

Sia ? 6 years, 6 months ago

Length = 8 m 50 cm = 850 cm
breadth = 6 m 25 cm = 625 cm
height = 4 m 75 cm = 475 cm
length of the longest rod is equal to
HCF of 850, 625 and 475

Now on factorization we get

850=2×25×17=2×52×17

625=25×25=54

475=25×19=52×19

HCF(475,625, 850) = 52=25
{tex}\because{/tex} HCF is 25, so the longest rod that can measure the dimensions of the room exactly = 25 cm

  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

Given equations are
{tex}\frac{x}{2} + y = 0.8{/tex}
{tex}\frac{x + 2y}{2} = 0.8{/tex}.
x + 2y = 1.6 ........ (i)
and
{tex}\frac{7}{{x + \frac{y}{2}}} = 10{/tex}
 {tex}\frac{{7 \times 2}}{{2x + y}} = 10{/tex}
{tex}\frac{{7}}{{2x + y}} = 5{/tex}
  7 = 10x + 5y
10x + 5y = 7 .......... (ii)
Multiply first equation by 10
10x + 20y = 16............ (iii)
Subtracting the equations (ii) from (iii) , we get
15y = 9
{tex}y = \frac{9}{{15}} = \frac{3}{5}{/tex}
Put value of y in (i)
{tex}x = 1.6 - 2\left( {\frac{3}{5}} \right) = 1.6 - \frac{6}{5} = \frac{2}{5}{/tex}
Solution is {tex}\left( {\frac{2}{5},\;\frac{3}{5}} \right){/tex}

  • 5 answers

Sumit Rao 7 years, 7 months ago

Yes ,it is proved by contradiction method

Hirana Vinothkumar 7 years, 7 months ago

Yes

Anirudh Gupta 7 years, 7 months ago

Yes

Shiksha Chauhan 7 years, 7 months ago

Ya it's a good question

Pyansu Nahak 7 years, 7 months ago

Yes
  • 1 answers

Sumit Rao 7 years, 7 months ago

Say we have a simple expression like x2 + bx. Having x twice in the same expression can make life hard. What can we do? Well, with a little inspiration from Geometry we can convert it, like this: Completing the Square Geometry As you can see x2 + bx can be rearranged nearly into a square ... ... and we can complete the square with (b/2)2 In Algebra it looks like this: x2 + bx + (b/2)2 = (x+b/2)2 "Complete the Square" So, by adding (b/2)2 we can complete the square. And (x+b/2)2 has x only once, which is easier to use.
  • 1 answers

Sumit Rao 7 years, 7 months ago

From NCERT
  • 2 answers

Indu Verma 7 years, 7 months ago

Ques12 ,16,83

Nishtha Singh 7 years, 7 months ago

Please see in this app . It's given here
  • 1 answers

Sahana Chachadi 7 years, 7 months ago

DJ
Okk
  • 0 answers
  • 2 answers

Aditya Ramchandani 7 years, 7 months ago

No explain easily

Trapti Yadav 7 years, 7 months ago

9x2
  • 2 answers

Sumit Rao 7 years, 7 months ago

No, its not possible If 0/0=not defined

Harshul Jain 7 years, 7 months ago

How can it possible?
  • 3 answers

Shweta Singh 7 years, 7 months ago

-4 and -3

Yuv Raj Singh 7 years, 7 months ago

X square +3x +4x+12 x(x+3)+4(x+3) (x+3) (x+4) The zeroes of given polynomial are (x+3)(x+4)

Sucheth Sreedhar 7 years, 7 months ago

12
  • 1 answers

Somesh Mishra 7 years, 7 months ago

alpha+beta=-1/1=-1 alpha×beta=-1/1=-1 so, alpha+2+beta+2=alpha+beta+4=-2+4=2 and (alpha+2)(beta+2)=2(alpha+beta)+(alpha)(beta)+4=-2-1+4=1 Thus, the required polynomial is f(x)=k(x^2-2x+1)
  • 0 answers
  • 1 answers

Nishtha Singh 7 years, 7 months ago

Give full question please
  • 0 answers
  • 2 answers

Sumit Rao 7 years, 7 months ago

In form of p/q

Utkarsh Singh 7 years, 7 months ago

Where
  • 1 answers

Sia ? 6 years, 4 months ago

The given polynomial is 3x+ x2 + 2x + 5
According to Division Algorithm,
Dividend = Quotient x Divisor + Remainder
{tex}\Rightarrow{/tex} f(x) = {tex}q ( x ) \times g ( x ) + r ( x ){/tex}
{tex}\Rightarrow g ( x ) = \frac { f ( x ) - r( x ) } { g ( x ) }{/tex}
Here,
f(x) = 3x3 + x+ 2x + 5
q(x) = 3x - 5
r(x) = 9x + 10
{tex}g ( x ) = \frac { \left( 3 x ^ { 3 } + x ^ { 2 } + 2 x + 5 \right) - ( 9 x + 10 ) } { ( 3 x - 5 ) } = \frac { 3 x ^ { 3 } + x ^ { 2 } - 7 x - 5 } { 3 x - 5 }{/tex}


{tex}\therefore{/tex} g(x) = x2 + 2x + 1.

  • 1 answers

Anjali Mahobiya 7 years, 7 months ago

a=bq+r On dividing a by b, q is quotient and r is remainder
  • 5 answers

Utkarsh Singh 7 years, 7 months ago

-23

Milind Patel 7 years, 7 months ago

By BODMAS

Milind Patel 7 years, 7 months ago

23

Abcd Xyz 7 years, 7 months ago

Know

Manvir Dalal 7 years, 7 months ago

..

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App